\left\{ \begin{array} { l } { y = k ( x - a ) } \\ { 5 x ^ { 2 } + 9 y ^ { 2 } = 5 a } \end{array} \right.
Solve for x, y
x=\frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}\text{, }y=-\frac{\sqrt{5}k\left(\sqrt{a\left(5+9k^{2}-9ak^{2}\right)}+\sqrt{5}a\right)}{9k^{2}+5}
x=\frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}\text{, }y=\frac{k\left(\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}-5a\right)}{9k^{2}+5}\text{, }\left(a>1\text{ and }|k|\leq \frac{\sqrt{-\frac{5}{1-a}}}{3}\right)\text{ or }\left(a\geq 0\text{ and }a\leq 1\right)
Solve for x, y (complex solution)
\left\{\begin{matrix}x=\frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}\text{, }y=-\frac{\sqrt{5}k\left(\sqrt{a\left(5+9k^{2}-9ak^{2}\right)}+\sqrt{5}a\right)}{9k^{2}+5}\text{; }x=\frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}\text{, }y=\frac{k\left(\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}-5a\right)}{9k^{2}+5}\text{, }&k\neq -\frac{\sqrt{5}i}{3}\text{ and }k\neq \frac{\sqrt{5}i}{3}\\x=\frac{9ak^{2}-5}{18k^{2}}\text{, }y=\frac{-9ak^{2}-5}{18k}\text{, }&a\neq 0\text{ and }\left(k=-\frac{\sqrt{5}i}{3}\text{ or }k=\frac{\sqrt{5}i}{3}\right)\\x\in \mathrm{C}\text{, }y=k\left(x-a\right)\text{, }&\left(k=\frac{\sqrt{5}i}{3}\text{ or }k=-\frac{\sqrt{5}i}{3}\right)\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=kx-ka
Consider the first equation. Use the distributive property to multiply k by x-a.
y-kx=-ka
Subtract kx from both sides.
y+\left(-k\right)x=-ak,5x^{2}+9y^{2}=5a
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=-ak
Solve y+\left(-k\right)x=-ak for y by isolating y on the left hand side of the equal sign.
y=kx-ak
Subtract \left(-k\right)x from both sides of the equation.
5x^{2}+9\left(kx-ak\right)^{2}=5a
Substitute kx-ak for y in the other equation, 5x^{2}+9y^{2}=5a.
5x^{2}+9\left(k^{2}x^{2}+2k\left(-ak\right)x+\left(-ak\right)^{2}\right)=5a
Square kx-ak.
5x^{2}+9k^{2}x^{2}+18k\left(-ak\right)x+9\left(-ak\right)^{2}=5a
Multiply 9 times k^{2}x^{2}+2k\left(-ak\right)x+\left(-ak\right)^{2}.
\left(9k^{2}+5\right)x^{2}+18k\left(-ak\right)x+9\left(-ak\right)^{2}=5a
Add 5x^{2} to 9k^{2}x^{2}.
\left(9k^{2}+5\right)x^{2}+18k\left(-ak\right)x+9\left(-ak\right)^{2}-5a=0
Subtract 5a from both sides of the equation.
x=\frac{-18k\left(-ak\right)±\sqrt{\left(18k\left(-ak\right)\right)^{2}-4\left(9k^{2}+5\right)a\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5+9k^{2} for a, 9\times 2k\left(-ak\right) for b, and a\left(9ak^{2}-5\right) for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18k\left(-ak\right)±\sqrt{324a^{2}k^{4}-4\left(9k^{2}+5\right)a\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
Square 9\times 2k\left(-ak\right).
x=\frac{-18k\left(-ak\right)±\sqrt{324a^{2}k^{4}+\left(-36k^{2}-20\right)a\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
Multiply -4 times 5+9k^{2}.
x=\frac{-18k\left(-ak\right)±\sqrt{324a^{2}k^{4}-4a\left(9k^{2}+5\right)\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
Multiply -20-36k^{2} times a\left(9ak^{2}-5\right).
x=\frac{-18k\left(-ak\right)±\sqrt{20a\left(5+9k^{2}-9ak^{2}\right)}}{2\left(9k^{2}+5\right)}
Add 324a^{2}k^{4} to -4\left(5+9k^{2}\right)a\left(9ak^{2}-5\right).
x=\frac{-18k\left(-ak\right)±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{2\left(9k^{2}+5\right)}
Take the square root of 20a\left(-9ak^{2}+9k^{2}+5\right).
x=\frac{18ak^{2}±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10}
Multiply 2 times 5+9k^{2}.
x=\frac{18ak^{2}+2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10}
Now solve the equation x=\frac{18ak^{2}±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10} when ± is plus. Add 18ak^{2} to 2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}.
x=\frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}
Divide 18ak^{2}+2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)} by 10+18k^{2}.
x=\frac{18ak^{2}-2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10}
Now solve the equation x=\frac{18ak^{2}±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10} when ± is minus. Subtract 2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)} from 18ak^{2}.
x=\frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}
Divide 18ak^{2}-2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)} by 10+18k^{2}.
y=k\times \frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak
There are two solutions for x: \frac{9ak^{2}+\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}} and \frac{9ak^{2}-\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}}. Substitute \frac{9ak^{2}+\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}} for x in the equation y=kx-ak to find the corresponding solution for y that satisfies both equations.
y=k\times \frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak
Now substitute \frac{9ak^{2}-\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}} for x in the equation y=kx-ak and solve to find the corresponding solution for y that satisfies both equations.
y=k\times \frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak,x=\frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}\text{ or }y=k\times \frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak,x=\frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}