Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=kx-ka
Consider the first equation. Use the distributive property to multiply k by x-a.
y-kx=-ka
Subtract kx from both sides.
y+\left(-k\right)x=-ak,5x^{2}+9y^{2}=5a
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=-ak
Solve y+\left(-k\right)x=-ak for y by isolating y on the left hand side of the equal sign.
y=kx-ak
Subtract \left(-k\right)x from both sides of the equation.
5x^{2}+9\left(kx-ak\right)^{2}=5a
Substitute kx-ak for y in the other equation, 5x^{2}+9y^{2}=5a.
5x^{2}+9\left(k^{2}x^{2}+2k\left(-ak\right)x+\left(-ak\right)^{2}\right)=5a
Square kx-ak.
5x^{2}+9k^{2}x^{2}+18k\left(-ak\right)x+9\left(-ak\right)^{2}=5a
Multiply 9 times k^{2}x^{2}+2k\left(-ak\right)x+\left(-ak\right)^{2}.
\left(9k^{2}+5\right)x^{2}+18k\left(-ak\right)x+9\left(-ak\right)^{2}=5a
Add 5x^{2} to 9k^{2}x^{2}.
\left(9k^{2}+5\right)x^{2}+18k\left(-ak\right)x+9\left(-ak\right)^{2}-5a=0
Subtract 5a from both sides of the equation.
x=\frac{-18k\left(-ak\right)±\sqrt{\left(18k\left(-ak\right)\right)^{2}-4\left(9k^{2}+5\right)a\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5+9k^{2} for a, 9\times 2k\left(-ak\right) for b, and a\left(9ak^{2}-5\right) for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18k\left(-ak\right)±\sqrt{324a^{2}k^{4}-4\left(9k^{2}+5\right)a\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
Square 9\times 2k\left(-ak\right).
x=\frac{-18k\left(-ak\right)±\sqrt{324a^{2}k^{4}+\left(-36k^{2}-20\right)a\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
Multiply -4 times 5+9k^{2}.
x=\frac{-18k\left(-ak\right)±\sqrt{324a^{2}k^{4}-4a\left(9k^{2}+5\right)\left(9ak^{2}-5\right)}}{2\left(9k^{2}+5\right)}
Multiply -20-36k^{2} times a\left(9ak^{2}-5\right).
x=\frac{-18k\left(-ak\right)±\sqrt{20a\left(5+9k^{2}-9ak^{2}\right)}}{2\left(9k^{2}+5\right)}
Add 324a^{2}k^{4} to -4\left(5+9k^{2}\right)a\left(9ak^{2}-5\right).
x=\frac{-18k\left(-ak\right)±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{2\left(9k^{2}+5\right)}
Take the square root of 20a\left(-9ak^{2}+9k^{2}+5\right).
x=\frac{18ak^{2}±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10}
Multiply 2 times 5+9k^{2}.
x=\frac{18ak^{2}+2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10}
Now solve the equation x=\frac{18ak^{2}±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10} when ± is plus. Add 18ak^{2} to 2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}.
x=\frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}
Divide 18ak^{2}+2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)} by 10+18k^{2}.
x=\frac{18ak^{2}-2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10}
Now solve the equation x=\frac{18ak^{2}±2\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{18k^{2}+10} when ± is minus. Subtract 2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)} from 18ak^{2}.
x=\frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}
Divide 18ak^{2}-2\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)} by 10+18k^{2}.
y=k\times \frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak
There are two solutions for x: \frac{9ak^{2}+\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}} and \frac{9ak^{2}-\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}}. Substitute \frac{9ak^{2}+\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}} for x in the equation y=kx-ak to find the corresponding solution for y that satisfies both equations.
y=k\times \frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak
Now substitute \frac{9ak^{2}-\sqrt{5a\left(-9ak^{2}+9k^{2}+5\right)}}{5+9k^{2}} for x in the equation y=kx-ak and solve to find the corresponding solution for y that satisfies both equations.
y=k\times \frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak,x=\frac{9ak^{2}+\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}\text{ or }y=k\times \frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}-ak,x=\frac{9ak^{2}-\sqrt{5a\left(5+9k^{2}-9ak^{2}\right)}}{9k^{2}+5}
The system is now solved.