Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=kx+k
Consider the first equation. Use the distributive property to multiply k by x+1.
x^{2}+2\left(kx+k\right)^{2}=2
Substitute kx+k for y in the other equation, x^{2}+2y^{2}=2.
x^{2}+2\left(k^{2}x^{2}+2kkx+k^{2}\right)=2
Square kx+k.
x^{2}+2k^{2}x^{2}+4k^{2}x+2k^{2}=2
Multiply 2 times k^{2}x^{2}+2kkx+k^{2}.
\left(2k^{2}+1\right)x^{2}+4k^{2}x+2k^{2}=2
Add x^{2} to 2k^{2}x^{2}.
\left(2k^{2}+1\right)x^{2}+4k^{2}x+2k^{2}-2=0
Subtract 2 from both sides of the equation.
x=\frac{-4k^{2}±\sqrt{\left(4k^{2}\right)^{2}-4\left(2k^{2}+1\right)\left(2k^{2}-2\right)}}{2\left(2k^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2k^{2} for a, 2\times 2kk for b, and 2k^{2}-2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4k^{2}±\sqrt{16k^{4}-4\left(2k^{2}+1\right)\left(2k^{2}-2\right)}}{2\left(2k^{2}+1\right)}
Square 2\times 2kk.
x=\frac{-4k^{2}±\sqrt{16k^{4}+\left(-8k^{2}-4\right)\left(2k^{2}-2\right)}}{2\left(2k^{2}+1\right)}
Multiply -4 times 1+2k^{2}.
x=\frac{-4k^{2}±\sqrt{16k^{4}+8+8k^{2}-16k^{4}}}{2\left(2k^{2}+1\right)}
Multiply -4-8k^{2} times 2k^{2}-2.
x=\frac{-4k^{2}±\sqrt{8k^{2}+8}}{2\left(2k^{2}+1\right)}
Add 16k^{4} to -16k^{4}+8k^{2}+8.
x=\frac{-4k^{2}±2\sqrt{2k^{2}+2}}{2\left(2k^{2}+1\right)}
Take the square root of 8k^{2}+8.
x=\frac{-4k^{2}±2\sqrt{2k^{2}+2}}{4k^{2}+2}
Multiply 2 times 1+2k^{2}.
x=\frac{-4k^{2}+2\sqrt{2k^{2}+2}}{4k^{2}+2}
Now solve the equation x=\frac{-4k^{2}±2\sqrt{2k^{2}+2}}{4k^{2}+2} when ± is plus. Add -4k^{2} to 2\sqrt{2k^{2}+2}.
x=\frac{-2k^{2}+\sqrt{2k^{2}+2}}{2k^{2}+1}
Divide -4k^{2}+2\sqrt{2k^{2}+2} by 2+4k^{2}.
x=\frac{-4k^{2}-2\sqrt{2k^{2}+2}}{4k^{2}+2}
Now solve the equation x=\frac{-4k^{2}±2\sqrt{2k^{2}+2}}{4k^{2}+2} when ± is minus. Subtract 2\sqrt{2k^{2}+2} from -4k^{2}.
x=-\frac{2k^{2}+\sqrt{2k^{2}+2}}{2k^{2}+1}
Divide -4k^{2}-2\sqrt{2k^{2}+2} by 2+4k^{2}.
y=k\times \frac{-2k^{2}+\sqrt{2k^{2}+2}}{2k^{2}+1}+k
There are two solutions for x: \frac{-2k^{2}+\sqrt{2+2k^{2}}}{1+2k^{2}} and -\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{1+k^{2}}\right)}{1+2k^{2}}. Substitute \frac{-2k^{2}+\sqrt{2+2k^{2}}}{1+2k^{2}} for x in the equation y=kx+k to find the corresponding solution for y that satisfies both equations.
y=\frac{-2k^{2}+\sqrt{2k^{2}+2}}{2k^{2}+1}k+k
Multiply k times \frac{-2k^{2}+\sqrt{2+2k^{2}}}{1+2k^{2}}.
y=k\left(-\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{k^{2}+1}\right)}{2k^{2}+1}\right)+k
Now substitute -\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{1+k^{2}}\right)}{1+2k^{2}} for x in the equation y=kx+k and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{k^{2}+1}\right)}{2k^{2}+1}\right)k+k
Multiply k times -\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{1+k^{2}}\right)}{1+2k^{2}}.
y=\frac{-2k^{2}+\sqrt{2k^{2}+2}}{2k^{2}+1}k+k,x=\frac{-2k^{2}+\sqrt{2k^{2}+2}}{2k^{2}+1}\text{ or }y=\left(-\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{k^{2}+1}\right)}{2k^{2}+1}\right)k+k,x=-\frac{\sqrt{2}\left(\sqrt{2}k^{2}+\sqrt{k^{2}+1}\right)}{2k^{2}+1}
The system is now solved.