Skip to main content
Solve for y, x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-3x=8
Consider the first equation. Subtract 3x from both sides.
y=3x+8
Subtract -3x from both sides of the equation.
x^{2}+\left(3x+8\right)^{2}=4
Substitute 3x+8 for y in the other equation, x^{2}+y^{2}=4.
x^{2}+9x^{2}+48x+64=4
Square 3x+8.
10x^{2}+48x+64=4
Add x^{2} to 9x^{2}.
10x^{2}+48x+60=0
Subtract 4 from both sides of the equation.
x=\frac{-48±\sqrt{48^{2}-4\times 10\times 60}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 8\times 2\times 3 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 10\times 60}}{2\times 10}
Square 1\times 8\times 2\times 3.
x=\frac{-48±\sqrt{2304-40\times 60}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
x=\frac{-48±\sqrt{2304-2400}}{2\times 10}
Multiply -40 times 60.
x=\frac{-48±\sqrt{-96}}{2\times 10}
Add 2304 to -2400.
x=\frac{-48±4\sqrt{6}i}{2\times 10}
Take the square root of -96.
x=\frac{-48±4\sqrt{6}i}{20}
Multiply 2 times 1+1\times 3^{2}.
x=\frac{-48+4\sqrt{6}i}{20}
Now solve the equation x=\frac{-48±4\sqrt{6}i}{20} when ± is plus. Add -48 to 4i\sqrt{6}.
x=\frac{-12+\sqrt{6}i}{5}
Divide -48+4i\sqrt{6} by 20.
x=\frac{-4\sqrt{6}i-48}{20}
Now solve the equation x=\frac{-48±4\sqrt{6}i}{20} when ± is minus. Subtract 4i\sqrt{6} from -48.
x=\frac{-\sqrt{6}i-12}{5}
Divide -48-4i\sqrt{6} by 20.
y=3\times \frac{-12+\sqrt{6}i}{5}+8
There are two solutions for x: \frac{-12+i\sqrt{6}}{5} and \frac{-12-i\sqrt{6}}{5}. Substitute \frac{-12+i\sqrt{6}}{5} for x in the equation y=3x+8 to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{-\sqrt{6}i-12}{5}+8
Now substitute \frac{-12-i\sqrt{6}}{5} for x in the equation y=3x+8 and solve to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{-12+\sqrt{6}i}{5}+8,x=\frac{-12+\sqrt{6}i}{5}\text{ or }y=3\times \frac{-\sqrt{6}i-12}{5}+8,x=\frac{-\sqrt{6}i-12}{5}
The system is now solved.