\left\{ \begin{array} { l } { y = 3 x + 8 } \\ { x ^ { 2 } + y ^ { 2 } = 4 } \end{array} \right.
Solve for y, x (complex solution)
x=\frac{-\sqrt{6}i-12}{5}\approx -2.4-0.489897949i\text{, }y=\frac{-3\sqrt{6}i+4}{5}\approx 0.8-1.469693846i
x=\frac{-12+\sqrt{6}i}{5}\approx -2.4+0.489897949i\text{, }y=\frac{4+3\sqrt{6}i}{5}\approx 0.8+1.469693846i
Graph
Share
Copied to clipboard
y-3x=8
Consider the first equation. Subtract 3x from both sides.
y=3x+8
Subtract -3x from both sides of the equation.
x^{2}+\left(3x+8\right)^{2}=4
Substitute 3x+8 for y in the other equation, x^{2}+y^{2}=4.
x^{2}+9x^{2}+48x+64=4
Square 3x+8.
10x^{2}+48x+64=4
Add x^{2} to 9x^{2}.
10x^{2}+48x+60=0
Subtract 4 from both sides of the equation.
x=\frac{-48±\sqrt{48^{2}-4\times 10\times 60}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 8\times 2\times 3 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 10\times 60}}{2\times 10}
Square 1\times 8\times 2\times 3.
x=\frac{-48±\sqrt{2304-40\times 60}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
x=\frac{-48±\sqrt{2304-2400}}{2\times 10}
Multiply -40 times 60.
x=\frac{-48±\sqrt{-96}}{2\times 10}
Add 2304 to -2400.
x=\frac{-48±4\sqrt{6}i}{2\times 10}
Take the square root of -96.
x=\frac{-48±4\sqrt{6}i}{20}
Multiply 2 times 1+1\times 3^{2}.
x=\frac{-48+4\sqrt{6}i}{20}
Now solve the equation x=\frac{-48±4\sqrt{6}i}{20} when ± is plus. Add -48 to 4i\sqrt{6}.
x=\frac{-12+\sqrt{6}i}{5}
Divide -48+4i\sqrt{6} by 20.
x=\frac{-4\sqrt{6}i-48}{20}
Now solve the equation x=\frac{-48±4\sqrt{6}i}{20} when ± is minus. Subtract 4i\sqrt{6} from -48.
x=\frac{-\sqrt{6}i-12}{5}
Divide -48-4i\sqrt{6} by 20.
y=3\times \frac{-12+\sqrt{6}i}{5}+8
There are two solutions for x: \frac{-12+i\sqrt{6}}{5} and \frac{-12-i\sqrt{6}}{5}. Substitute \frac{-12+i\sqrt{6}}{5} for x in the equation y=3x+8 to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{-\sqrt{6}i-12}{5}+8
Now substitute \frac{-12-i\sqrt{6}}{5} for x in the equation y=3x+8 and solve to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{-12+\sqrt{6}i}{5}+8,x=\frac{-12+\sqrt{6}i}{5}\text{ or }y=3\times \frac{-\sqrt{6}i-12}{5}+8,x=\frac{-\sqrt{6}i-12}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}