\left\{ \begin{array} { l } { y = - 2 x + 2 } \\ { 4 y + 3 = - 12 } \end{array} \right.
Solve for y, x
x = \frac{23}{8} = 2\frac{7}{8} = 2.875
y = -\frac{15}{4} = -3\frac{3}{4} = -3.75
Graph
Share
Copied to clipboard
4y=-12-3
Consider the second equation. Subtract 3 from both sides.
4y=-15
Subtract 3 from -12 to get -15.
y=-\frac{15}{4}
Divide both sides by 4.
-\frac{15}{4}=-2x+2
Consider the first equation. Insert the known values of variables into the equation.
-2x+2=-\frac{15}{4}
Swap sides so that all variable terms are on the left hand side.
-2x=-\frac{15}{4}-2
Subtract 2 from both sides.
-2x=-\frac{23}{4}
Subtract 2 from -\frac{15}{4} to get -\frac{23}{4}.
x=\frac{-\frac{23}{4}}{-2}
Divide both sides by -2.
x=\frac{-23}{4\left(-2\right)}
Express \frac{-\frac{23}{4}}{-2} as a single fraction.
x=\frac{-23}{-8}
Multiply 4 and -2 to get -8.
x=\frac{23}{8}
Fraction \frac{-23}{-8} can be simplified to \frac{23}{8} by removing the negative sign from both the numerator and the denominator.
y=-\frac{15}{4} x=\frac{23}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}