\left\{ \begin{array} { l } { y = - 10 + z } \\ { x = 2 z } \\ { x + 2 y = 10 } \end{array} \right.
Solve for y, z, x
x=15
y = -\frac{5}{2} = -2\frac{1}{2} = -2.5
z = \frac{15}{2} = 7\frac{1}{2} = 7.5
Share
Copied to clipboard
x+2\left(-10+z\right)=10
Substitute -10+z for y in the equation x+2y=10.
z=\frac{1}{2}x x=30-2z
Solve the second equation for z and the third equation for x.
x=30-2\times \frac{1}{2}x
Substitute \frac{1}{2}x for z in the equation x=30-2z.
x=15
Solve x=30-2\times \frac{1}{2}x for x.
z=\frac{1}{2}\times 15
Substitute 15 for x in the equation z=\frac{1}{2}x.
z=\frac{15}{2}
Calculate z from z=\frac{1}{2}\times 15.
y=-10+\frac{15}{2}
Substitute \frac{15}{2} for z in the equation y=-10+z.
y=-\frac{5}{2}
Calculate y from y=-10+\frac{15}{2}.
y=-\frac{5}{2} z=\frac{15}{2} x=15
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}