Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y+\frac{6}{5}x=31
Consider the first equation. Add \frac{6}{5}x to both sides.
y-\frac{10}{3}x=-105
Consider the second equation. Subtract \frac{10}{3}x from both sides.
y+\frac{6}{5}x=31,y-\frac{10}{3}x=-105
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\frac{6}{5}x=31
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=-\frac{6}{5}x+31
Subtract \frac{6x}{5} from both sides of the equation.
-\frac{6}{5}x+31-\frac{10}{3}x=-105
Substitute -\frac{6x}{5}+31 for y in the other equation, y-\frac{10}{3}x=-105.
-\frac{68}{15}x+31=-105
Add -\frac{6x}{5} to -\frac{10x}{3}.
-\frac{68}{15}x=-136
Subtract 31 from both sides of the equation.
x=30
Divide both sides of the equation by -\frac{68}{15}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=-\frac{6}{5}\times 30+31
Substitute 30 for x in y=-\frac{6}{5}x+31. Because the resulting equation contains only one variable, you can solve for y directly.
y=-36+31
Multiply -\frac{6}{5} times 30.
y=-5
Add 31 to -36.
y=-5,x=30
The system is now solved.
y+\frac{6}{5}x=31
Consider the first equation. Add \frac{6}{5}x to both sides.
y-\frac{10}{3}x=-105
Consider the second equation. Subtract \frac{10}{3}x from both sides.
y+\frac{6}{5}x=31,y-\frac{10}{3}x=-105
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}31\\-105\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right))\left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right))\left(\begin{matrix}31\\-105\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right))\left(\begin{matrix}31\\-105\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{6}{5}\\1&-\frac{10}{3}\end{matrix}\right))\left(\begin{matrix}31\\-105\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{10}{3}}{-\frac{10}{3}-\frac{6}{5}}&-\frac{\frac{6}{5}}{-\frac{10}{3}-\frac{6}{5}}\\-\frac{1}{-\frac{10}{3}-\frac{6}{5}}&\frac{1}{-\frac{10}{3}-\frac{6}{5}}\end{matrix}\right)\left(\begin{matrix}31\\-105\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{25}{34}&\frac{9}{34}\\\frac{15}{68}&-\frac{15}{68}\end{matrix}\right)\left(\begin{matrix}31\\-105\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{25}{34}\times 31+\frac{9}{34}\left(-105\right)\\\frac{15}{68}\times 31-\frac{15}{68}\left(-105\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\30\end{matrix}\right)
Do the arithmetic.
y=-5,x=30
Extract the matrix elements y and x.
y+\frac{6}{5}x=31
Consider the first equation. Add \frac{6}{5}x to both sides.
y-\frac{10}{3}x=-105
Consider the second equation. Subtract \frac{10}{3}x from both sides.
y+\frac{6}{5}x=31,y-\frac{10}{3}x=-105
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y+\frac{6}{5}x+\frac{10}{3}x=31+105
Subtract y-\frac{10}{3}x=-105 from y+\frac{6}{5}x=31 by subtracting like terms on each side of the equal sign.
\frac{6}{5}x+\frac{10}{3}x=31+105
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
\frac{68}{15}x=31+105
Add \frac{6x}{5} to \frac{10x}{3}.
\frac{68}{15}x=136
Add 31 to 105.
x=30
Divide both sides of the equation by \frac{68}{15}, which is the same as multiplying both sides by the reciprocal of the fraction.
y-\frac{10}{3}\times 30=-105
Substitute 30 for x in y-\frac{10}{3}x=-105. Because the resulting equation contains only one variable, you can solve for y directly.
y-100=-105
Multiply -\frac{10}{3} times 30.
y=-5
Add 100 to both sides of the equation.
y=-5,x=30
The system is now solved.