Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-\frac{4}{9}x=\frac{4}{3}
Consider the first equation. Subtract \frac{4}{9}x from both sides.
16x^{2}+25y^{2}=400
Consider the second equation. Multiply both sides of the equation by 400, the least common multiple of 25,16.
y-\frac{4}{9}x=\frac{4}{3},16x^{2}+25y^{2}=400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-\frac{4}{9}x=\frac{4}{3}
Solve y-\frac{4}{9}x=\frac{4}{3} for y by isolating y on the left hand side of the equal sign.
y=\frac{4}{9}x+\frac{4}{3}
Subtract -\frac{4}{9}x from both sides of the equation.
16x^{2}+25\left(\frac{4}{9}x+\frac{4}{3}\right)^{2}=400
Substitute \frac{4}{9}x+\frac{4}{3} for y in the other equation, 16x^{2}+25y^{2}=400.
16x^{2}+25\left(\frac{16}{81}x^{2}+\frac{32}{27}x+\frac{16}{9}\right)=400
Square \frac{4}{9}x+\frac{4}{3}.
16x^{2}+\frac{400}{81}x^{2}+\frac{800}{27}x+\frac{400}{9}=400
Multiply 25 times \frac{16}{81}x^{2}+\frac{32}{27}x+\frac{16}{9}.
\frac{1696}{81}x^{2}+\frac{800}{27}x+\frac{400}{9}=400
Add 16x^{2} to \frac{400}{81}x^{2}.
\frac{1696}{81}x^{2}+\frac{800}{27}x-\frac{3200}{9}=0
Subtract 400 from both sides of the equation.
x=\frac{-\frac{800}{27}±\sqrt{\left(\frac{800}{27}\right)^{2}-4\times \frac{1696}{81}\left(-\frac{3200}{9}\right)}}{2\times \frac{1696}{81}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16+25\times \left(\frac{4}{9}\right)^{2} for a, 25\times \frac{4}{3}\times \frac{4}{9}\times 2 for b, and -\frac{3200}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{800}{27}±\sqrt{\frac{640000}{729}-4\times \frac{1696}{81}\left(-\frac{3200}{9}\right)}}{2\times \frac{1696}{81}}
Square 25\times \frac{4}{3}\times \frac{4}{9}\times 2.
x=\frac{-\frac{800}{27}±\sqrt{\frac{640000}{729}-\frac{6784}{81}\left(-\frac{3200}{9}\right)}}{2\times \frac{1696}{81}}
Multiply -4 times 16+25\times \left(\frac{4}{9}\right)^{2}.
x=\frac{-\frac{800}{27}±\sqrt{\frac{640000+21708800}{729}}}{2\times \frac{1696}{81}}
Multiply -\frac{6784}{81} times -\frac{3200}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{800}{27}±\sqrt{\frac{2483200}{81}}}{2\times \frac{1696}{81}}
Add \frac{640000}{729} to \frac{21708800}{729} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{800}{27}±\frac{160\sqrt{97}}{9}}{2\times \frac{1696}{81}}
Take the square root of \frac{2483200}{81}.
x=\frac{-\frac{800}{27}±\frac{160\sqrt{97}}{9}}{\frac{3392}{81}}
Multiply 2 times 16+25\times \left(\frac{4}{9}\right)^{2}.
x=\frac{\frac{160\sqrt{97}}{9}-\frac{800}{27}}{\frac{3392}{81}}
Now solve the equation x=\frac{-\frac{800}{27}±\frac{160\sqrt{97}}{9}}{\frac{3392}{81}} when ± is plus. Add -\frac{800}{27} to \frac{160\sqrt{97}}{9}.
x=\frac{45\sqrt{97}-75}{106}
Divide -\frac{800}{27}+\frac{160\sqrt{97}}{9} by \frac{3392}{81} by multiplying -\frac{800}{27}+\frac{160\sqrt{97}}{9} by the reciprocal of \frac{3392}{81}.
x=\frac{-\frac{160\sqrt{97}}{9}-\frac{800}{27}}{\frac{3392}{81}}
Now solve the equation x=\frac{-\frac{800}{27}±\frac{160\sqrt{97}}{9}}{\frac{3392}{81}} when ± is minus. Subtract \frac{160\sqrt{97}}{9} from -\frac{800}{27}.
x=\frac{-45\sqrt{97}-75}{106}
Divide -\frac{800}{27}-\frac{160\sqrt{97}}{9} by \frac{3392}{81} by multiplying -\frac{800}{27}-\frac{160\sqrt{97}}{9} by the reciprocal of \frac{3392}{81}.
y=\frac{4}{9}\times \frac{45\sqrt{97}-75}{106}+\frac{4}{3}
There are two solutions for x: \frac{-75+45\sqrt{97}}{106} and \frac{-75-45\sqrt{97}}{106}. Substitute \frac{-75+45\sqrt{97}}{106} for x in the equation y=\frac{4}{9}x+\frac{4}{3} to find the corresponding solution for y that satisfies both equations.
y=\frac{4\times \frac{45\sqrt{97}-75}{106}}{9}+\frac{4}{3}
Multiply \frac{4}{9} times \frac{-75+45\sqrt{97}}{106}.
y=\frac{4}{9}\times \frac{-45\sqrt{97}-75}{106}+\frac{4}{3}
Now substitute \frac{-75-45\sqrt{97}}{106} for x in the equation y=\frac{4}{9}x+\frac{4}{3} and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{4\times \frac{-45\sqrt{97}-75}{106}}{9}+\frac{4}{3}
Multiply \frac{4}{9} times \frac{-75-45\sqrt{97}}{106}.
y=\frac{4\times \frac{45\sqrt{97}-75}{106}}{9}+\frac{4}{3},x=\frac{45\sqrt{97}-75}{106}\text{ or }y=\frac{4\times \frac{-45\sqrt{97}-75}{106}}{9}+\frac{4}{3},x=\frac{-45\sqrt{97}-75}{106}
The system is now solved.