\left\{ \begin{array} { l } { y = \frac { 4 } { 15 } x } \\ { x ^ { 2 } + 4 y ^ { 2 } = 4 } \end{array} \right.
Solve for y, x
x=-\frac{30}{17}\approx -1.764705882\text{, }y=-\frac{8}{17}\approx -0.470588235
x=\frac{30}{17}\approx 1.764705882\text{, }y=\frac{8}{17}\approx 0.470588235
Graph
Share
Copied to clipboard
y-\frac{4}{15}x=0
Consider the first equation. Subtract \frac{4}{15}x from both sides.
y-\frac{4}{15}x=0,x^{2}+4y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-\frac{4}{15}x=0
Solve y-\frac{4}{15}x=0 for y by isolating y on the left hand side of the equal sign.
y=\frac{4}{15}x
Subtract -\frac{4}{15}x from both sides of the equation.
x^{2}+4\times \left(\frac{4}{15}x\right)^{2}=4
Substitute \frac{4}{15}x for y in the other equation, x^{2}+4y^{2}=4.
x^{2}+4\times \frac{16}{225}x^{2}=4
Square \frac{4}{15}x.
x^{2}+\frac{64}{225}x^{2}=4
Multiply 4 times \frac{16}{225}x^{2}.
\frac{289}{225}x^{2}=4
Add x^{2} to \frac{64}{225}x^{2}.
\frac{289}{225}x^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times \frac{289}{225}\left(-4\right)}}{2\times \frac{289}{225}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+4\times \left(\frac{4}{15}\right)^{2} for a, 4\times 0\times \frac{4}{15}\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{289}{225}\left(-4\right)}}{2\times \frac{289}{225}}
Square 4\times 0\times \frac{4}{15}\times 2.
x=\frac{0±\sqrt{-\frac{1156}{225}\left(-4\right)}}{2\times \frac{289}{225}}
Multiply -4 times 1+4\times \left(\frac{4}{15}\right)^{2}.
x=\frac{0±\sqrt{\frac{4624}{225}}}{2\times \frac{289}{225}}
Multiply -\frac{1156}{225} times -4.
x=\frac{0±\frac{68}{15}}{2\times \frac{289}{225}}
Take the square root of \frac{4624}{225}.
x=\frac{0±\frac{68}{15}}{\frac{578}{225}}
Multiply 2 times 1+4\times \left(\frac{4}{15}\right)^{2}.
x=\frac{30}{17}
Now solve the equation x=\frac{0±\frac{68}{15}}{\frac{578}{225}} when ± is plus.
x=-\frac{30}{17}
Now solve the equation x=\frac{0±\frac{68}{15}}{\frac{578}{225}} when ± is minus.
y=\frac{4}{15}\times \frac{30}{17}
There are two solutions for x: \frac{30}{17} and -\frac{30}{17}. Substitute \frac{30}{17} for x in the equation y=\frac{4}{15}x to find the corresponding solution for y that satisfies both equations.
y=\frac{8}{17}
Multiply \frac{4}{15} times \frac{30}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{4}{15}\left(-\frac{30}{17}\right)
Now substitute -\frac{30}{17} for x in the equation y=\frac{4}{15}x and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{8}{17}
Multiply \frac{4}{15} times -\frac{30}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{8}{17},x=\frac{30}{17}\text{ or }y=-\frac{8}{17},x=-\frac{30}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}