Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-\frac{3}{4}x=0
Consider the first equation. Subtract \frac{3}{4}x from both sides.
y-\frac{3}{4}x=0,x^{2}+y^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-\frac{3}{4}x=0
Solve y-\frac{3}{4}x=0 for y by isolating y on the left hand side of the equal sign.
y=\frac{3}{4}x
Subtract -\frac{3}{4}x from both sides of the equation.
x^{2}+\left(\frac{3}{4}x\right)^{2}=25
Substitute \frac{3}{4}x for y in the other equation, x^{2}+y^{2}=25.
x^{2}+\frac{9}{16}x^{2}=25
Square \frac{3}{4}x.
\frac{25}{16}x^{2}=25
Add x^{2} to \frac{9}{16}x^{2}.
\frac{25}{16}x^{2}-25=0
Subtract 25 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times \frac{25}{16}\left(-25\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{3}{4}\right)^{2} for a, 1\times 0\times \frac{3}{4}\times 2 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{25}{16}\left(-25\right)}}{2\times \frac{25}{16}}
Square 1\times 0\times \frac{3}{4}\times 2.
x=\frac{0±\sqrt{-\frac{25}{4}\left(-25\right)}}{2\times \frac{25}{16}}
Multiply -4 times 1+1\times \left(\frac{3}{4}\right)^{2}.
x=\frac{0±\sqrt{\frac{625}{4}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -25.
x=\frac{0±\frac{25}{2}}{2\times \frac{25}{16}}
Take the square root of \frac{625}{4}.
x=\frac{0±\frac{25}{2}}{\frac{25}{8}}
Multiply 2 times 1+1\times \left(\frac{3}{4}\right)^{2}.
x=4
Now solve the equation x=\frac{0±\frac{25}{2}}{\frac{25}{8}} when ± is plus.
x=-4
Now solve the equation x=\frac{0±\frac{25}{2}}{\frac{25}{8}} when ± is minus.
y=\frac{3}{4}\times 4
There are two solutions for x: 4 and -4. Substitute 4 for x in the equation y=\frac{3}{4}x to find the corresponding solution for y that satisfies both equations.
y=3
Multiply \frac{3}{4} times 4.
y=\frac{3}{4}\left(-4\right)
Now substitute -4 for x in the equation y=\frac{3}{4}x and solve to find the corresponding solution for y that satisfies both equations.
y=-3
Multiply \frac{3}{4} times -4.
y=3,x=4\text{ or }y=-3,x=-4
The system is now solved.