\left\{ \begin{array} { l } { y = \frac { 3 } { 4 } x } \\ { x ^ { 2 } + y ^ { 2 } = 25 } \end{array} \right.
Solve for y, x
x=-4\text{, }y=-3
x=4\text{, }y=3
Graph
Share
Copied to clipboard
y-\frac{3}{4}x=0
Consider the first equation. Subtract \frac{3}{4}x from both sides.
y-\frac{3}{4}x=0,x^{2}+y^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-\frac{3}{4}x=0
Solve y-\frac{3}{4}x=0 for y by isolating y on the left hand side of the equal sign.
y=\frac{3}{4}x
Subtract -\frac{3}{4}x from both sides of the equation.
x^{2}+\left(\frac{3}{4}x\right)^{2}=25
Substitute \frac{3}{4}x for y in the other equation, x^{2}+y^{2}=25.
x^{2}+\frac{9}{16}x^{2}=25
Square \frac{3}{4}x.
\frac{25}{16}x^{2}=25
Add x^{2} to \frac{9}{16}x^{2}.
\frac{25}{16}x^{2}-25=0
Subtract 25 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times \frac{25}{16}\left(-25\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{3}{4}\right)^{2} for a, 1\times 0\times \frac{3}{4}\times 2 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{25}{16}\left(-25\right)}}{2\times \frac{25}{16}}
Square 1\times 0\times \frac{3}{4}\times 2.
x=\frac{0±\sqrt{-\frac{25}{4}\left(-25\right)}}{2\times \frac{25}{16}}
Multiply -4 times 1+1\times \left(\frac{3}{4}\right)^{2}.
x=\frac{0±\sqrt{\frac{625}{4}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -25.
x=\frac{0±\frac{25}{2}}{2\times \frac{25}{16}}
Take the square root of \frac{625}{4}.
x=\frac{0±\frac{25}{2}}{\frac{25}{8}}
Multiply 2 times 1+1\times \left(\frac{3}{4}\right)^{2}.
x=4
Now solve the equation x=\frac{0±\frac{25}{2}}{\frac{25}{8}} when ± is plus.
x=-4
Now solve the equation x=\frac{0±\frac{25}{2}}{\frac{25}{8}} when ± is minus.
y=\frac{3}{4}\times 4
There are two solutions for x: 4 and -4. Substitute 4 for x in the equation y=\frac{3}{4}x to find the corresponding solution for y that satisfies both equations.
y=3
Multiply \frac{3}{4} times 4.
y=\frac{3}{4}\left(-4\right)
Now substitute -4 for x in the equation y=\frac{3}{4}x and solve to find the corresponding solution for y that satisfies both equations.
y=-3
Multiply \frac{3}{4} times -4.
y=3,x=4\text{ or }y=-3,x=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}