\left\{ \begin{array} { l } { x _ { 1 } - 5 x _ { 2 } - 2 x _ { 3 } = 4 } \\ { 2 x _ { 1 } - 3 x _ { 2 } + x _ { 3 } = 7 } \\ { - x _ { 1 } + 12 x _ { 2 } + 7 x _ { 1 } = - 5 } \end{array} \right.
Solve for x_1, x_2, x_3
x_{1} = \frac{23}{18} = 1\frac{5}{18} \approx 1.277777778
x_{2} = -\frac{19}{18} = -1\frac{1}{18} \approx -1.055555556
x_{3} = \frac{23}{18} = 1\frac{5}{18} \approx 1.277777778
Share
Copied to clipboard
x_{1}=5x_{2}+2x_{3}+4
Solve x_{1}-5x_{2}-2x_{3}=4 for x_{1}.
2\left(5x_{2}+2x_{3}+4\right)-3x_{2}+x_{3}=7 -\left(5x_{2}+2x_{3}+4\right)+12x_{2}+7\left(5x_{2}+2x_{3}+4\right)=-5
Substitute 5x_{2}+2x_{3}+4 for x_{1} in the second and third equation.
x_{2}=-\frac{5}{7}x_{3}-\frac{1}{7} x_{3}=-\frac{29}{12}-\frac{7}{2}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{29}{12}-\frac{7}{2}\left(-\frac{5}{7}x_{3}-\frac{1}{7}\right)
Substitute -\frac{5}{7}x_{3}-\frac{1}{7} for x_{2} in the equation x_{3}=-\frac{29}{12}-\frac{7}{2}x_{2}.
x_{3}=\frac{23}{18}
Solve x_{3}=-\frac{29}{12}-\frac{7}{2}\left(-\frac{5}{7}x_{3}-\frac{1}{7}\right) for x_{3}.
x_{2}=-\frac{5}{7}\times \frac{23}{18}-\frac{1}{7}
Substitute \frac{23}{18} for x_{3} in the equation x_{2}=-\frac{5}{7}x_{3}-\frac{1}{7}.
x_{2}=-\frac{19}{18}
Calculate x_{2} from x_{2}=-\frac{5}{7}\times \frac{23}{18}-\frac{1}{7}.
x_{1}=5\left(-\frac{19}{18}\right)+2\times \frac{23}{18}+4
Substitute -\frac{19}{18} for x_{2} and \frac{23}{18} for x_{3} in the equation x_{1}=5x_{2}+2x_{3}+4.
x_{1}=\frac{23}{18}
Calculate x_{1} from x_{1}=5\left(-\frac{19}{18}\right)+2\times \frac{23}{18}+4.
x_{1}=\frac{23}{18} x_{2}=-\frac{19}{18} x_{3}=\frac{23}{18}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}