Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=5x_{2}+2x_{3}+4
Solve x_{1}-5x_{2}-2x_{3}=4 for x_{1}.
2\left(5x_{2}+2x_{3}+4\right)-3x_{2}+x_{3}=7 -\left(5x_{2}+2x_{3}+4\right)+12x_{2}+7\left(5x_{2}+2x_{3}+4\right)=-5
Substitute 5x_{2}+2x_{3}+4 for x_{1} in the second and third equation.
x_{2}=-\frac{5}{7}x_{3}-\frac{1}{7} x_{3}=-\frac{29}{12}-\frac{7}{2}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{29}{12}-\frac{7}{2}\left(-\frac{5}{7}x_{3}-\frac{1}{7}\right)
Substitute -\frac{5}{7}x_{3}-\frac{1}{7} for x_{2} in the equation x_{3}=-\frac{29}{12}-\frac{7}{2}x_{2}.
x_{3}=\frac{23}{18}
Solve x_{3}=-\frac{29}{12}-\frac{7}{2}\left(-\frac{5}{7}x_{3}-\frac{1}{7}\right) for x_{3}.
x_{2}=-\frac{5}{7}\times \frac{23}{18}-\frac{1}{7}
Substitute \frac{23}{18} for x_{3} in the equation x_{2}=-\frac{5}{7}x_{3}-\frac{1}{7}.
x_{2}=-\frac{19}{18}
Calculate x_{2} from x_{2}=-\frac{5}{7}\times \frac{23}{18}-\frac{1}{7}.
x_{1}=5\left(-\frac{19}{18}\right)+2\times \frac{23}{18}+4
Substitute -\frac{19}{18} for x_{2} and \frac{23}{18} for x_{3} in the equation x_{1}=5x_{2}+2x_{3}+4.
x_{1}=\frac{23}{18}
Calculate x_{1} from x_{1}=5\left(-\frac{19}{18}\right)+2\times \frac{23}{18}+4.
x_{1}=\frac{23}{18} x_{2}=-\frac{19}{18} x_{3}=\frac{23}{18}
The system is now solved.