\left\{ \begin{array} { l } { x _ { 1 } - 2 x _ { 2 } + x _ { 3 } = 1 } \\ { 4 x _ { 1 } - 3 x _ { 2 } + x _ { 3 } = 3 } \\ { 2 x _ { 1 } - 5 x _ { 2 } - 3 x _ { 3 } = - 9 } \end{array} \right.
Solve for x_1, x_2, x_3
x_{1}=1
x_{2}=1
x_{3}=2
Share
Copied to clipboard
x_{1}=2x_{2}-x_{3}+1
Solve x_{1}-2x_{2}+x_{3}=1 for x_{1}.
4\left(2x_{2}-x_{3}+1\right)-3x_{2}+x_{3}=3 2\left(2x_{2}-x_{3}+1\right)-5x_{2}-3x_{3}=-9
Substitute 2x_{2}-x_{3}+1 for x_{1} in the second and third equation.
x_{2}=\frac{3}{5}x_{3}-\frac{1}{5} x_{3}=-\frac{1}{5}x_{2}+\frac{11}{5}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-\frac{1}{5}\left(\frac{3}{5}x_{3}-\frac{1}{5}\right)+\frac{11}{5}
Substitute \frac{3}{5}x_{3}-\frac{1}{5} for x_{2} in the equation x_{3}=-\frac{1}{5}x_{2}+\frac{11}{5}.
x_{3}=2
Solve x_{3}=-\frac{1}{5}\left(\frac{3}{5}x_{3}-\frac{1}{5}\right)+\frac{11}{5} for x_{3}.
x_{2}=\frac{3}{5}\times 2-\frac{1}{5}
Substitute 2 for x_{3} in the equation x_{2}=\frac{3}{5}x_{3}-\frac{1}{5}.
x_{2}=1
Calculate x_{2} from x_{2}=\frac{3}{5}\times 2-\frac{1}{5}.
x_{1}=2\times 1-2+1
Substitute 1 for x_{2} and 2 for x_{3} in the equation x_{1}=2x_{2}-x_{3}+1.
x_{1}=1
Calculate x_{1} from x_{1}=2\times 1-2+1.
x_{1}=1 x_{2}=1 x_{3}=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}