\left\{ \begin{array} { l } { x _ { 1 } + x _ { 2 } = 97 } \\ { \frac { x _ { 2 } } { x _ { 1 } } = 2 } \end{array} \right.
Solve for x_1, x_2
x_{1} = \frac{97}{3} = 32\frac{1}{3} \approx 32.333333333
x_{2} = \frac{194}{3} = 64\frac{2}{3} \approx 64.666666667
Share
Copied to clipboard
x_{2}=2x_{1}
Consider the second equation. Variable x_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x_{1}.
x_{2}-2x_{1}=0
Subtract 2x_{1} from both sides.
x_{1}+x_{2}=97,-2x_{1}+x_{2}=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x_{1}+x_{2}=97
Choose one of the equations and solve it for x_{1} by isolating x_{1} on the left hand side of the equal sign.
x_{1}=-x_{2}+97
Subtract x_{2} from both sides of the equation.
-2\left(-x_{2}+97\right)+x_{2}=0
Substitute -x_{2}+97 for x_{1} in the other equation, -2x_{1}+x_{2}=0.
2x_{2}-194+x_{2}=0
Multiply -2 times -x_{2}+97.
3x_{2}-194=0
Add 2x_{2} to x_{2}.
3x_{2}=194
Add 194 to both sides of the equation.
x_{2}=\frac{194}{3}
Divide both sides by 3.
x_{1}=-\frac{194}{3}+97
Substitute \frac{194}{3} for x_{2} in x_{1}=-x_{2}+97. Because the resulting equation contains only one variable, you can solve for x_{1} directly.
x_{1}=\frac{97}{3}
Add 97 to -\frac{194}{3}.
x_{1}=\frac{97}{3},x_{2}=\frac{194}{3}
The system is now solved.
x_{2}=2x_{1}
Consider the second equation. Variable x_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x_{1}.
x_{2}-2x_{1}=0
Subtract 2x_{1} from both sides.
x_{1}+x_{2}=97,-2x_{1}+x_{2}=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}97\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}97\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}97\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}97\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{1}{1-\left(-2\right)}\\-\frac{-2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}97\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}97\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 97\\\frac{2}{3}\times 97\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{97}{3}\\\frac{194}{3}\end{matrix}\right)
Do the arithmetic.
x_{1}=\frac{97}{3},x_{2}=\frac{194}{3}
Extract the matrix elements x_{1} and x_{2}.
x_{2}=2x_{1}
Consider the second equation. Variable x_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x_{1}.
x_{2}-2x_{1}=0
Subtract 2x_{1} from both sides.
x_{1}+x_{2}=97,-2x_{1}+x_{2}=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x_{1}+2x_{1}+x_{2}-x_{2}=97
Subtract -2x_{1}+x_{2}=0 from x_{1}+x_{2}=97 by subtracting like terms on each side of the equal sign.
x_{1}+2x_{1}=97
Add x_{2} to -x_{2}. Terms x_{2} and -x_{2} cancel out, leaving an equation with only one variable that can be solved.
3x_{1}=97
Add x_{1} to 2x_{1}.
x_{1}=\frac{97}{3}
Divide both sides by 3.
-2\times \frac{97}{3}+x_{2}=0
Substitute \frac{97}{3} for x_{1} in -2x_{1}+x_{2}=0. Because the resulting equation contains only one variable, you can solve for x_{2} directly.
-\frac{194}{3}+x_{2}=0
Multiply -2 times \frac{97}{3}.
x_{2}=\frac{194}{3}
Add \frac{194}{3} to both sides of the equation.
x_{1}=\frac{97}{3},x_{2}=\frac{194}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}