\left\{ \begin{array} { l } { x - y = 500 } \\ { \frac { 23 x } { 20 } - \frac { 9 y } { 10 } = 950 } \end{array} \right.
Solve for x, y
x=2000
y=1500
Graph
Share
Copied to clipboard
23x-2\times 9y=19000
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 20,10.
23x-18y=19000
Multiply -2 and 9 to get -18.
x-y=500,23x-18y=19000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+500
Add y to both sides of the equation.
23\left(y+500\right)-18y=19000
Substitute y+500 for x in the other equation, 23x-18y=19000.
23y+11500-18y=19000
Multiply 23 times y+500.
5y+11500=19000
Add 23y to -18y.
5y=7500
Subtract 11500 from both sides of the equation.
y=1500
Divide both sides by 5.
x=1500+500
Substitute 1500 for y in x=y+500. Because the resulting equation contains only one variable, you can solve for x directly.
x=2000
Add 500 to 1500.
x=2000,y=1500
The system is now solved.
23x-2\times 9y=19000
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 20,10.
23x-18y=19000
Multiply -2 and 9 to get -18.
x-y=500,23x-18y=19000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\23&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\19000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\23&-18\end{matrix}\right))\left(\begin{matrix}1&-1\\23&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\23&-18\end{matrix}\right))\left(\begin{matrix}500\\19000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\23&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\23&-18\end{matrix}\right))\left(\begin{matrix}500\\19000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\23&-18\end{matrix}\right))\left(\begin{matrix}500\\19000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-\left(-23\right)}&-\frac{-1}{-18-\left(-23\right)}\\-\frac{23}{-18-\left(-23\right)}&\frac{1}{-18-\left(-23\right)}\end{matrix}\right)\left(\begin{matrix}500\\19000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{5}&\frac{1}{5}\\-\frac{23}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}500\\19000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{5}\times 500+\frac{1}{5}\times 19000\\-\frac{23}{5}\times 500+\frac{1}{5}\times 19000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2000\\1500\end{matrix}\right)
Do the arithmetic.
x=2000,y=1500
Extract the matrix elements x and y.
23x-2\times 9y=19000
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 20,10.
23x-18y=19000
Multiply -2 and 9 to get -18.
x-y=500,23x-18y=19000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
23x+23\left(-1\right)y=23\times 500,23x-18y=19000
To make x and 23x equal, multiply all terms on each side of the first equation by 23 and all terms on each side of the second by 1.
23x-23y=11500,23x-18y=19000
Simplify.
23x-23x-23y+18y=11500-19000
Subtract 23x-18y=19000 from 23x-23y=11500 by subtracting like terms on each side of the equal sign.
-23y+18y=11500-19000
Add 23x to -23x. Terms 23x and -23x cancel out, leaving an equation with only one variable that can be solved.
-5y=11500-19000
Add -23y to 18y.
-5y=-7500
Add 11500 to -19000.
y=1500
Divide both sides by -5.
23x-18\times 1500=19000
Substitute 1500 for y in 23x-18y=19000. Because the resulting equation contains only one variable, you can solve for x directly.
23x-27000=19000
Multiply -18 times 1500.
23x=46000
Add 27000 to both sides of the equation.
x=2000
Divide both sides by 23.
x=2000,y=1500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}