\left\{ \begin{array} { l } { x - y = 5 } \\ { \frac { x } { 2 } + \frac { y - 7 } { 5 } = - 1 } \end{array} \right.
Solve for x, y
x=2
y=-3
Graph
Share
Copied to clipboard
x-y=5,\frac{1}{2}x+\frac{1}{5}\left(y-7\right)=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+5
Add y to both sides of the equation.
\frac{1}{2}\left(y+5\right)+\frac{1}{5}\left(y-7\right)=-1
Substitute y+5 for x in the other equation, \frac{1}{2}x+\frac{1}{5}\left(y-7\right)=-1.
\frac{1}{2}y+\frac{5}{2}+\frac{1}{5}\left(y-7\right)=-1
Multiply \frac{1}{2} times y+5.
\frac{1}{2}y+\frac{5}{2}+\frac{1}{5}y-\frac{7}{5}=-1
Multiply \frac{1}{5} times y-7.
\frac{7}{10}y+\frac{5}{2}-\frac{7}{5}=-1
Add \frac{y}{2} to \frac{y}{5}.
\frac{7}{10}y+\frac{11}{10}=-1
Add \frac{5}{2} to -\frac{7}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{7}{10}y=-\frac{21}{10}
Subtract \frac{11}{10} from both sides of the equation.
y=-3
Divide both sides of the equation by \frac{7}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-3+5
Substitute -3 for y in x=y+5. Because the resulting equation contains only one variable, you can solve for x directly.
x=2
Add 5 to -3.
x=2,y=-3
The system is now solved.
x-y=5,\frac{1}{2}x+\frac{1}{5}\left(y-7\right)=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{2}x+\frac{1}{5}\left(y-7\right)=-1
Simplify the second equation to put it in standard form.
\frac{1}{2}x+\frac{1}{5}y-\frac{7}{5}=-1
Multiply \frac{1}{5} times y-7.
\frac{1}{2}x+\frac{1}{5}y=\frac{2}{5}
Add \frac{7}{5} to both sides of the equation.
\left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\\frac{2}{5}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}5\\\frac{2}{5}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}5\\\frac{2}{5}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{2}&\frac{1}{5}\end{matrix}\right))\left(\begin{matrix}5\\\frac{2}{5}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{5}}{\frac{1}{5}-\left(-\frac{1}{2}\right)}&-\frac{-1}{\frac{1}{5}-\left(-\frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{\frac{1}{5}-\left(-\frac{1}{2}\right)}&\frac{1}{\frac{1}{5}-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}5\\\frac{2}{5}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{10}{7}\\-\frac{5}{7}&\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}5\\\frac{2}{5}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 5+\frac{10}{7}\times \frac{2}{5}\\-\frac{5}{7}\times 5+\frac{10}{7}\times \frac{2}{5}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Do the arithmetic.
x=2,y=-3
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}