\left\{ \begin{array} { l } { x - y = 120000 } \\ { 1.2 x - 2.9 y = 234000 } \end{array} \right.
Solve for x, y
x = \frac{1140000}{17} = 67058\frac{14}{17} \approx 67058.823529412
y = -\frac{900000}{17} = -52941\frac{3}{17} \approx -52941.176470588
Graph
Share
Copied to clipboard
x-y=120000,1.2x-2.9y=234000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=120000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+120000
Add y to both sides of the equation.
1.2\left(y+120000\right)-2.9y=234000
Substitute y+120000 for x in the other equation, 1.2x-2.9y=234000.
1.2y+144000-2.9y=234000
Multiply 1.2 times y+120000.
-1.7y+144000=234000
Add \frac{6y}{5} to -\frac{29y}{10}.
-1.7y=90000
Subtract 144000 from both sides of the equation.
y=-\frac{900000}{17}
Divide both sides of the equation by -1.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{900000}{17}+120000
Substitute -\frac{900000}{17} for y in x=y+120000. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1140000}{17}
Add 120000 to -\frac{900000}{17}.
x=\frac{1140000}{17},y=-\frac{900000}{17}
The system is now solved.
x-y=120000,1.2x-2.9y=234000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120000\\234000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right))\left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right))\left(\begin{matrix}120000\\234000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right))\left(\begin{matrix}120000\\234000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.2&-2.9\end{matrix}\right))\left(\begin{matrix}120000\\234000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2.9}{-2.9-\left(-1.2\right)}&-\frac{-1}{-2.9-\left(-1.2\right)}\\-\frac{1.2}{-2.9-\left(-1.2\right)}&\frac{1}{-2.9-\left(-1.2\right)}\end{matrix}\right)\left(\begin{matrix}120000\\234000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{29}{17}&-\frac{10}{17}\\\frac{12}{17}&-\frac{10}{17}\end{matrix}\right)\left(\begin{matrix}120000\\234000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{29}{17}\times 120000-\frac{10}{17}\times 234000\\\frac{12}{17}\times 120000-\frac{10}{17}\times 234000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1140000}{17}\\-\frac{900000}{17}\end{matrix}\right)
Do the arithmetic.
x=\frac{1140000}{17},y=-\frac{900000}{17}
Extract the matrix elements x and y.
x-y=120000,1.2x-2.9y=234000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1.2x+1.2\left(-1\right)y=1.2\times 120000,1.2x-2.9y=234000
To make x and \frac{6x}{5} equal, multiply all terms on each side of the first equation by 1.2 and all terms on each side of the second by 1.
1.2x-1.2y=144000,1.2x-2.9y=234000
Simplify.
1.2x-1.2x-1.2y+2.9y=144000-234000
Subtract 1.2x-2.9y=234000 from 1.2x-1.2y=144000 by subtracting like terms on each side of the equal sign.
-1.2y+2.9y=144000-234000
Add \frac{6x}{5} to -\frac{6x}{5}. Terms \frac{6x}{5} and -\frac{6x}{5} cancel out, leaving an equation with only one variable that can be solved.
1.7y=144000-234000
Add -\frac{6y}{5} to \frac{29y}{10}.
1.7y=-90000
Add 144000 to -234000.
y=-\frac{900000}{17}
Divide both sides of the equation by 1.7, which is the same as multiplying both sides by the reciprocal of the fraction.
1.2x-2.9\left(-\frac{900000}{17}\right)=234000
Substitute -\frac{900000}{17} for y in 1.2x-2.9y=234000. Because the resulting equation contains only one variable, you can solve for x directly.
1.2x+\frac{2610000}{17}=234000
Multiply -2.9 times -\frac{900000}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
1.2x=\frac{1368000}{17}
Subtract \frac{2610000}{17} from both sides of the equation.
x=\frac{1140000}{17}
Divide both sides of the equation by 1.2, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1140000}{17},y=-\frac{900000}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}