\left\{ \begin{array} { l } { x - y = 10 } \\ { 2 x + 2,5 y = 200 } \end{array} \right.
Solve for x, y
x=50
y=40
Graph
Share
Copied to clipboard
x-y=10;2x+2,5y=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+10
Add y to both sides of the equation.
2\left(y+10\right)+2,5y=200
Substitute y+10 for x in the other equation, 2x+2,5y=200.
2y+20+2,5y=200
Multiply 2 times y+10.
4,5y+20=200
Add 2y to \frac{5y}{2}.
4,5y=180
Subtract 20 from both sides of the equation.
y=40
Divide both sides of the equation by 4,5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=40+10
Substitute 40 for y in x=y+10. Because the resulting equation contains only one variable, you can solve for x directly.
x=50
Add 10 to 40.
x=50;y=40
The system is now solved.
x-y=10;2x+2,5y=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right))\left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right))\left(\begin{matrix}10\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right))\left(\begin{matrix}10\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2,5\end{matrix}\right))\left(\begin{matrix}10\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2,5}{2,5-\left(-2\right)}&-\frac{-1}{2,5-\left(-2\right)}\\-\frac{2}{2,5-\left(-2\right)}&\frac{1}{2,5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&\frac{2}{9}\\-\frac{4}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}10\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\times 10+\frac{2}{9}\times 200\\-\frac{4}{9}\times 10+\frac{2}{9}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\40\end{matrix}\right)
Do the arithmetic.
x=50;y=40
Extract the matrix elements x and y.
x-y=10;2x+2,5y=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2\left(-1\right)y=2\times 10;2x+2,5y=200
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x-2y=20;2x+2,5y=200
Simplify.
2x-2x-2y-2,5y=20-200
Subtract 2x+2,5y=200 from 2x-2y=20 by subtracting like terms on each side of the equal sign.
-2y-2,5y=20-200
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-4,5y=20-200
Add -2y to -\frac{5y}{2}.
-4,5y=-180
Add 20 to -200.
y=40
Divide both sides of the equation by -4,5, which is the same as multiplying both sides by the reciprocal of the fraction.
2x+2,5\times 40=200
Substitute 40 for y in 2x+2,5y=200. Because the resulting equation contains only one variable, you can solve for x directly.
2x+100=200
Multiply 2,5 times 40.
2x=100
Subtract 100 from both sides of the equation.
x=50
Divide both sides by 2.
x=50;y=40
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}