\left\{ \begin{array} { l } { x - y = \frac { 1 } { 4 } } \\ { 3 x ^ { 2 } - 6 = y ^ { 2 } } \end{array} \right.
Solve for x, y
x=\frac{-\sqrt{195}-1}{8}\approx -1.870530005\text{, }y=\frac{-\sqrt{195}-3}{8}\approx -2.120530005
x=\frac{\sqrt{195}-1}{8}\approx 1.620530005\text{, }y=\frac{\sqrt{195}-3}{8}\approx 1.370530005
Graph
Share
Copied to clipboard
3x^{2}-6-y^{2}=0
Consider the second equation. Subtract y^{2} from both sides.
3x^{2}-y^{2}=6
Add 6 to both sides. Anything plus zero gives itself.
x-y=\frac{1}{4},-y^{2}+3x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=\frac{1}{4}
Solve x-y=\frac{1}{4} for x by isolating x on the left hand side of the equal sign.
x=y+\frac{1}{4}
Subtract -y from both sides of the equation.
-y^{2}+3\left(y+\frac{1}{4}\right)^{2}=6
Substitute y+\frac{1}{4} for x in the other equation, -y^{2}+3x^{2}=6.
-y^{2}+3\left(y^{2}+\frac{1}{2}y+\frac{1}{16}\right)=6
Square y+\frac{1}{4}.
-y^{2}+3y^{2}+\frac{3}{2}y+\frac{3}{16}=6
Multiply 3 times y^{2}+\frac{1}{2}y+\frac{1}{16}.
2y^{2}+\frac{3}{2}y+\frac{3}{16}=6
Add -y^{2} to 3y^{2}.
2y^{2}+\frac{3}{2}y-\frac{93}{16}=0
Subtract 6 from both sides of the equation.
y=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times 2\left(-\frac{93}{16}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+3\times 1^{2} for a, 3\times \frac{1}{4}\times 1\times 2 for b, and -\frac{93}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times 2\left(-\frac{93}{16}\right)}}{2\times 2}
Square 3\times \frac{1}{4}\times 1\times 2.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-8\left(-\frac{93}{16}\right)}}{2\times 2}
Multiply -4 times -1+3\times 1^{2}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+\frac{93}{2}}}{2\times 2}
Multiply -8 times -\frac{93}{16}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{195}{4}}}{2\times 2}
Add \frac{9}{4} to \frac{93}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{2\times 2}
Take the square root of \frac{195}{4}.
y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{4}
Multiply 2 times -1+3\times 1^{2}.
y=\frac{\sqrt{195}-3}{2\times 4}
Now solve the equation y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{4} when ± is plus. Add -\frac{3}{2} to \frac{\sqrt{195}}{2}.
y=\frac{\sqrt{195}-3}{8}
Divide \frac{-3+\sqrt{195}}{2} by 4.
y=\frac{-\sqrt{195}-3}{2\times 4}
Now solve the equation y=\frac{-\frac{3}{2}±\frac{\sqrt{195}}{2}}{4} when ± is minus. Subtract \frac{\sqrt{195}}{2} from -\frac{3}{2}.
y=\frac{-\sqrt{195}-3}{8}
Divide \frac{-3-\sqrt{195}}{2} by 4.
x=\frac{\sqrt{195}-3}{8}+\frac{1}{4}
There are two solutions for y: \frac{-3+\sqrt{195}}{8} and \frac{-3-\sqrt{195}}{8}. Substitute \frac{-3+\sqrt{195}}{8} for y in the equation x=y+\frac{1}{4} to find the corresponding solution for x that satisfies both equations.
x=\frac{-\sqrt{195}-3}{8}+\frac{1}{4}
Now substitute \frac{-3-\sqrt{195}}{8} for y in the equation x=y+\frac{1}{4} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{195}-3}{8}+\frac{1}{4},y=\frac{\sqrt{195}-3}{8}\text{ or }x=\frac{-\sqrt{195}-3}{8}+\frac{1}{4},y=\frac{-\sqrt{195}-3}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}