\left\{ \begin{array} { l } { x - y + 5 z = 3 } \\ { 2 x - y - 4 z = 4 } \\ { 3 x + y + z = 5 } \end{array} \right.
Solve for x, y, z
x = \frac{13}{7} = 1\frac{6}{7} \approx 1.857142857
y=-\frac{2}{3}\approx -0.666666667
z=\frac{2}{21}\approx 0.095238095
Share
Copied to clipboard
x=y-5z+3
Solve x-y+5z=3 for x.
2\left(y-5z+3\right)-y-4z=4 3\left(y-5z+3\right)+y+z=5
Substitute y-5z+3 for x in the second and third equation.
y=-2+14z z=\frac{2}{7}+\frac{2}{7}y
Solve these equations for y and z respectively.
z=\frac{2}{7}+\frac{2}{7}\left(-2+14z\right)
Substitute -2+14z for y in the equation z=\frac{2}{7}+\frac{2}{7}y.
z=\frac{2}{21}
Solve z=\frac{2}{7}+\frac{2}{7}\left(-2+14z\right) for z.
y=-2+14\times \frac{2}{21}
Substitute \frac{2}{21} for z in the equation y=-2+14z.
y=-\frac{2}{3}
Calculate y from y=-2+14\times \frac{2}{21}.
x=-\frac{2}{3}-5\times \frac{2}{21}+3
Substitute -\frac{2}{3} for y and \frac{2}{21} for z in the equation x=y-5z+3.
x=\frac{13}{7}
Calculate x from x=-\frac{2}{3}-5\times \frac{2}{21}+3.
x=\frac{13}{7} y=-\frac{2}{3} z=\frac{2}{21}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}