\left\{ \begin{array} { l } { x - 50 = y } \\ { x + y = 430 } \end{array} \right.
Solve for x, y
x=240
y=190
Graph
Share
Copied to clipboard
x-50-y=0
Consider the first equation. Subtract y from both sides.
x-y=50
Add 50 to both sides. Anything plus zero gives itself.
x-y=50,x+y=430
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=50
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+50
Add y to both sides of the equation.
y+50+y=430
Substitute y+50 for x in the other equation, x+y=430.
2y+50=430
Add y to y.
2y=380
Subtract 50 from both sides of the equation.
y=190
Divide both sides by 2.
x=190+50
Substitute 190 for y in x=y+50. Because the resulting equation contains only one variable, you can solve for x directly.
x=240
Add 50 to 190.
x=240,y=190
The system is now solved.
x-50-y=0
Consider the first equation. Subtract y from both sides.
x-y=50
Add 50 to both sides. Anything plus zero gives itself.
x-y=50,x+y=430
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\430\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}50\\430\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}50\\430\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}50\\430\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}50\\430\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}50\\430\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 50+\frac{1}{2}\times 430\\-\frac{1}{2}\times 50+\frac{1}{2}\times 430\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\190\end{matrix}\right)
Do the arithmetic.
x=240,y=190
Extract the matrix elements x and y.
x-50-y=0
Consider the first equation. Subtract y from both sides.
x-y=50
Add 50 to both sides. Anything plus zero gives itself.
x-y=50,x+y=430
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-y-y=50-430
Subtract x+y=430 from x-y=50 by subtracting like terms on each side of the equal sign.
-y-y=50-430
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-2y=50-430
Add -y to -y.
-2y=-380
Add 50 to -430.
y=190
Divide both sides by -2.
x+190=430
Substitute 190 for y in x+y=430. Because the resulting equation contains only one variable, you can solve for x directly.
x=240
Subtract 190 from both sides of the equation.
x=240,y=190
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}