\left\{ \begin{array} { l } { x - 25 = 3 ( y + 25 ) } \\ { x + y = 120 } \end{array} \right.
Solve for x, y
x=115
y=5
Graph
Share
Copied to clipboard
x-25=3y+75
Consider the first equation. Use the distributive property to multiply 3 by y+25.
x-25-3y=75
Subtract 3y from both sides.
x-3y=75+25
Add 25 to both sides.
x-3y=100
Add 75 and 25 to get 100.
x-3y=100,x+y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=3y+100
Add 3y to both sides of the equation.
3y+100+y=120
Substitute 3y+100 for x in the other equation, x+y=120.
4y+100=120
Add 3y to y.
4y=20
Subtract 100 from both sides of the equation.
y=5
Divide both sides by 4.
x=3\times 5+100
Substitute 5 for y in x=3y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=15+100
Multiply 3 times 5.
x=115
Add 100 to 15.
x=115,y=5
The system is now solved.
x-25=3y+75
Consider the first equation. Use the distributive property to multiply 3 by y+25.
x-25-3y=75
Subtract 3y from both sides.
x-3y=75+25
Add 25 to both sides.
x-3y=100
Add 75 and 25 to get 100.
x-3y=100,x+y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}100\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-3}{1-\left(-3\right)}\\-\frac{1}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}100\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}100\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 100+\frac{3}{4}\times 120\\-\frac{1}{4}\times 100+\frac{1}{4}\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}115\\5\end{matrix}\right)
Do the arithmetic.
x=115,y=5
Extract the matrix elements x and y.
x-25=3y+75
Consider the first equation. Use the distributive property to multiply 3 by y+25.
x-25-3y=75
Subtract 3y from both sides.
x-3y=75+25
Add 25 to both sides.
x-3y=100
Add 75 and 25 to get 100.
x-3y=100,x+y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-3y-y=100-120
Subtract x+y=120 from x-3y=100 by subtracting like terms on each side of the equal sign.
-3y-y=100-120
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-4y=100-120
Add -3y to -y.
-4y=-20
Add 100 to -120.
y=5
Divide both sides by -4.
x+5=120
Substitute 5 for y in x+y=120. Because the resulting equation contains only one variable, you can solve for x directly.
x=115
Subtract 5 from both sides of the equation.
x=115,y=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}