Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2y=6,4y^{2}+x^{2}=42
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=6
Solve x-2y=6 for x by isolating x on the left hand side of the equal sign.
x=2y+6
Subtract -2y from both sides of the equation.
4y^{2}+\left(2y+6\right)^{2}=42
Substitute 2y+6 for x in the other equation, 4y^{2}+x^{2}=42.
4y^{2}+4y^{2}+24y+36=42
Square 2y+6.
8y^{2}+24y+36=42
Add 4y^{2} to 4y^{2}.
8y^{2}+24y-6=0
Subtract 42 from both sides of the equation.
y=\frac{-24±\sqrt{24^{2}-4\times 8\left(-6\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4+1\times 2^{2} for a, 1\times 6\times 2\times 2 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\times 8\left(-6\right)}}{2\times 8}
Square 1\times 6\times 2\times 2.
y=\frac{-24±\sqrt{576-32\left(-6\right)}}{2\times 8}
Multiply -4 times 4+1\times 2^{2}.
y=\frac{-24±\sqrt{576+192}}{2\times 8}
Multiply -32 times -6.
y=\frac{-24±\sqrt{768}}{2\times 8}
Add 576 to 192.
y=\frac{-24±16\sqrt{3}}{2\times 8}
Take the square root of 768.
y=\frac{-24±16\sqrt{3}}{16}
Multiply 2 times 4+1\times 2^{2}.
y=\frac{16\sqrt{3}-24}{16}
Now solve the equation y=\frac{-24±16\sqrt{3}}{16} when ± is plus. Add -24 to 16\sqrt{3}.
y=\sqrt{3}-\frac{3}{2}
Divide -24+16\sqrt{3} by 16.
y=\frac{-16\sqrt{3}-24}{16}
Now solve the equation y=\frac{-24±16\sqrt{3}}{16} when ± is minus. Subtract 16\sqrt{3} from -24.
y=-\sqrt{3}-\frac{3}{2}
Divide -24-16\sqrt{3} by 16.
x=2\left(\sqrt{3}-\frac{3}{2}\right)+6
There are two solutions for y: -\frac{3}{2}+\sqrt{3} and -\frac{3}{2}-\sqrt{3}. Substitute -\frac{3}{2}+\sqrt{3} for y in the equation x=2y+6 to find the corresponding solution for x that satisfies both equations.
x=2\left(-\sqrt{3}-\frac{3}{2}\right)+6
Now substitute -\frac{3}{2}-\sqrt{3} for y in the equation x=2y+6 and solve to find the corresponding solution for x that satisfies both equations.
x=2\left(\sqrt{3}-\frac{3}{2}\right)+6,y=\sqrt{3}-\frac{3}{2}\text{ or }x=2\left(-\sqrt{3}-\frac{3}{2}\right)+6,y=-\sqrt{3}-\frac{3}{2}
The system is now solved.