\left\{ \begin{array} { l } { x - 2 y = 6 } \\ { x ^ { 2 } + 4 y ^ { 2 } = 42 } \end{array} \right.
Solve for x, y
x=3-2\sqrt{3}\approx -0.464101615\text{, }y=-\sqrt{3}-\frac{3}{2}\approx -3.232050808
x=2\sqrt{3}+3\approx 6.464101615\text{, }y=\sqrt{3}-\frac{3}{2}\approx 0.232050808
Graph
Share
Copied to clipboard
x-2y=6,4y^{2}+x^{2}=42
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=6
Solve x-2y=6 for x by isolating x on the left hand side of the equal sign.
x=2y+6
Subtract -2y from both sides of the equation.
4y^{2}+\left(2y+6\right)^{2}=42
Substitute 2y+6 for x in the other equation, 4y^{2}+x^{2}=42.
4y^{2}+4y^{2}+24y+36=42
Square 2y+6.
8y^{2}+24y+36=42
Add 4y^{2} to 4y^{2}.
8y^{2}+24y-6=0
Subtract 42 from both sides of the equation.
y=\frac{-24±\sqrt{24^{2}-4\times 8\left(-6\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4+1\times 2^{2} for a, 1\times 6\times 2\times 2 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\times 8\left(-6\right)}}{2\times 8}
Square 1\times 6\times 2\times 2.
y=\frac{-24±\sqrt{576-32\left(-6\right)}}{2\times 8}
Multiply -4 times 4+1\times 2^{2}.
y=\frac{-24±\sqrt{576+192}}{2\times 8}
Multiply -32 times -6.
y=\frac{-24±\sqrt{768}}{2\times 8}
Add 576 to 192.
y=\frac{-24±16\sqrt{3}}{2\times 8}
Take the square root of 768.
y=\frac{-24±16\sqrt{3}}{16}
Multiply 2 times 4+1\times 2^{2}.
y=\frac{16\sqrt{3}-24}{16}
Now solve the equation y=\frac{-24±16\sqrt{3}}{16} when ± is plus. Add -24 to 16\sqrt{3}.
y=\sqrt{3}-\frac{3}{2}
Divide -24+16\sqrt{3} by 16.
y=\frac{-16\sqrt{3}-24}{16}
Now solve the equation y=\frac{-24±16\sqrt{3}}{16} when ± is minus. Subtract 16\sqrt{3} from -24.
y=-\sqrt{3}-\frac{3}{2}
Divide -24-16\sqrt{3} by 16.
x=2\left(\sqrt{3}-\frac{3}{2}\right)+6
There are two solutions for y: -\frac{3}{2}+\sqrt{3} and -\frac{3}{2}-\sqrt{3}. Substitute -\frac{3}{2}+\sqrt{3} for y in the equation x=2y+6 to find the corresponding solution for x that satisfies both equations.
x=2\left(-\sqrt{3}-\frac{3}{2}\right)+6
Now substitute -\frac{3}{2}-\sqrt{3} for y in the equation x=2y+6 and solve to find the corresponding solution for x that satisfies both equations.
x=2\left(\sqrt{3}-\frac{3}{2}\right)+6,y=\sqrt{3}-\frac{3}{2}\text{ or }x=2\left(-\sqrt{3}-\frac{3}{2}\right)+6,y=-\sqrt{3}-\frac{3}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}