Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2y=17,7x-6y=47
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=17
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=2y+17
Add 2y to both sides of the equation.
7\left(2y+17\right)-6y=47
Substitute 2y+17 for x in the other equation, 7x-6y=47.
14y+119-6y=47
Multiply 7 times 2y+17.
8y+119=47
Add 14y to -6y.
8y=-72
Subtract 119 from both sides of the equation.
y=-9
Divide both sides by 8.
x=2\left(-9\right)+17
Substitute -9 for y in x=2y+17. Because the resulting equation contains only one variable, you can solve for x directly.
x=-18+17
Multiply 2 times -9.
x=-1
Add 17 to -18.
x=-1,y=-9
The system is now solved.
x-2y=17,7x-6y=47
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\47\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2\\7&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-\left(-2\times 7\right)}&-\frac{-2}{-6-\left(-2\times 7\right)}\\-\frac{7}{-6-\left(-2\times 7\right)}&\frac{1}{-6-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{1}{4}\\-\frac{7}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\times 17+\frac{1}{4}\times 47\\-\frac{7}{8}\times 17+\frac{1}{8}\times 47\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-9\end{matrix}\right)
Do the arithmetic.
x=-1,y=-9
Extract the matrix elements x and y.
x-2y=17,7x-6y=47
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7x+7\left(-2\right)y=7\times 17,7x-6y=47
To make x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 1.
7x-14y=119,7x-6y=47
Simplify.
7x-7x-14y+6y=119-47
Subtract 7x-6y=47 from 7x-14y=119 by subtracting like terms on each side of the equal sign.
-14y+6y=119-47
Add 7x to -7x. Terms 7x and -7x cancel out, leaving an equation with only one variable that can be solved.
-8y=119-47
Add -14y to 6y.
-8y=72
Add 119 to -47.
y=-9
Divide both sides by -8.
7x-6\left(-9\right)=47
Substitute -9 for y in 7x-6y=47. Because the resulting equation contains only one variable, you can solve for x directly.
7x+54=47
Multiply -6 times -9.
7x=-7
Subtract 54 from both sides of the equation.
x=-1
Divide both sides by 7.
x=-1,y=-9
The system is now solved.