\left\{ \begin{array} { l } { x - 2 y + 2 = 2 x - 3 y - 9 } \\ { 2 x - 5 y + 4 = - x - y + 3 } \end{array} \right.
Solve for x, y
x=45
y=34
Graph
Share
Copied to clipboard
x-2y+2-2x=-3y-9
Consider the first equation. Subtract 2x from both sides.
-x-2y+2=-3y-9
Combine x and -2x to get -x.
-x-2y+2+3y=-9
Add 3y to both sides.
-x+y+2=-9
Combine -2y and 3y to get y.
-x+y=-9-2
Subtract 2 from both sides.
-x+y=-11
Subtract 2 from -9 to get -11.
2x-5y+4+x=-y+3
Consider the second equation. Add x to both sides.
3x-5y+4=-y+3
Combine 2x and x to get 3x.
3x-5y+4+y=3
Add y to both sides.
3x-4y+4=3
Combine -5y and y to get -4y.
3x-4y=3-4
Subtract 4 from both sides.
3x-4y=-1
Subtract 4 from 3 to get -1.
-x+y=-11,3x-4y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-x+y=-11
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-x=-y-11
Subtract y from both sides of the equation.
x=-\left(-y-11\right)
Divide both sides by -1.
x=y+11
Multiply -1 times -y-11.
3\left(y+11\right)-4y=-1
Substitute y+11 for x in the other equation, 3x-4y=-1.
3y+33-4y=-1
Multiply 3 times y+11.
-y+33=-1
Add 3y to -4y.
-y=-34
Subtract 33 from both sides of the equation.
y=34
Divide both sides by -1.
x=34+11
Substitute 34 for y in x=y+11. Because the resulting equation contains only one variable, you can solve for x directly.
x=45
Add 11 to 34.
x=45,y=34
The system is now solved.
x-2y+2-2x=-3y-9
Consider the first equation. Subtract 2x from both sides.
-x-2y+2=-3y-9
Combine x and -2x to get -x.
-x-2y+2+3y=-9
Add 3y to both sides.
-x+y+2=-9
Combine -2y and 3y to get y.
-x+y=-9-2
Subtract 2 from both sides.
-x+y=-11
Subtract 2 from -9 to get -11.
2x-5y+4+x=-y+3
Consider the second equation. Add x to both sides.
3x-5y+4=-y+3
Combine 2x and x to get 3x.
3x-5y+4+y=3
Add y to both sides.
3x-4y+4=3
Combine -5y and y to get -4y.
3x-4y=3-4
Subtract 4 from both sides.
3x-4y=-1
Subtract 4 from 3 to get -1.
-x+y=-11,3x-4y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-1&1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}-1&1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}-11\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-1&1\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}-11\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-4\end{matrix}\right))\left(\begin{matrix}-11\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-\left(-4\right)-3}&-\frac{1}{-\left(-4\right)-3}\\-\frac{3}{-\left(-4\right)-3}&-\frac{1}{-\left(-4\right)-3}\end{matrix}\right)\left(\begin{matrix}-11\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&-1\\-3&-1\end{matrix}\right)\left(\begin{matrix}-11\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\left(-11\right)-\left(-1\right)\\-3\left(-11\right)-\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\34\end{matrix}\right)
Do the arithmetic.
x=45,y=34
Extract the matrix elements x and y.
x-2y+2-2x=-3y-9
Consider the first equation. Subtract 2x from both sides.
-x-2y+2=-3y-9
Combine x and -2x to get -x.
-x-2y+2+3y=-9
Add 3y to both sides.
-x+y+2=-9
Combine -2y and 3y to get y.
-x+y=-9-2
Subtract 2 from both sides.
-x+y=-11
Subtract 2 from -9 to get -11.
2x-5y+4+x=-y+3
Consider the second equation. Add x to both sides.
3x-5y+4=-y+3
Combine 2x and x to get 3x.
3x-5y+4+y=3
Add y to both sides.
3x-4y+4=3
Combine -5y and y to get -4y.
3x-4y=3-4
Subtract 4 from both sides.
3x-4y=-1
Subtract 4 from 3 to get -1.
-x+y=-11,3x-4y=-1
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\left(-1\right)x+3y=3\left(-11\right),-3x-\left(-4y\right)=-\left(-1\right)
To make -x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by -1.
-3x+3y=-33,-3x+4y=1
Simplify.
-3x+3x+3y-4y=-33-1
Subtract -3x+4y=1 from -3x+3y=-33 by subtracting like terms on each side of the equal sign.
3y-4y=-33-1
Add -3x to 3x. Terms -3x and 3x cancel out, leaving an equation with only one variable that can be solved.
-y=-33-1
Add 3y to -4y.
-y=-34
Add -33 to -1.
y=34
Divide both sides by -1.
3x-4\times 34=-1
Substitute 34 for y in 3x-4y=-1. Because the resulting equation contains only one variable, you can solve for x directly.
3x-136=-1
Multiply -4 times 34.
3x=135
Add 136 to both sides of the equation.
x=45
Divide both sides by 3.
x=45,y=34
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}