Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3y-2=9,\frac{1}{6}\left(x-2\right)-2y=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y-2=9
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x-3y=11
Add 2 to both sides of the equation.
x=3y+11
Add 3y to both sides of the equation.
\frac{1}{6}\left(3y+11-2\right)-2y=3
Substitute 3y+11 for x in the other equation, \frac{1}{6}\left(x-2\right)-2y=3.
\frac{1}{6}\left(3y+9\right)-2y=3
Add 11 to -2.
\frac{1}{2}y+\frac{3}{2}-2y=3
Multiply \frac{1}{6} times 9+3y.
-\frac{3}{2}y+\frac{3}{2}=3
Add \frac{y}{2} to -2y.
-\frac{3}{2}y=\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
y=-1
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=3\left(-1\right)+11
Substitute -1 for y in x=3y+11. Because the resulting equation contains only one variable, you can solve for x directly.
x=-3+11
Multiply 3 times -1.
x=8
Add 11 to -3.
x=8,y=-1
The system is now solved.
x-3y-2=9,\frac{1}{6}\left(x-2\right)-2y=3
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{6}\left(x-2\right)-2y=3
Simplify the second equation to put it in standard form.
\frac{1}{6}x-\frac{1}{3}-2y=3
Multiply \frac{1}{6} times x-2.
\frac{1}{6}x-2y=\frac{10}{3}
Add \frac{1}{3} to both sides of the equation.
\left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\\frac{10}{3}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right))\left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right))\left(\begin{matrix}11\\\frac{10}{3}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right))\left(\begin{matrix}11\\\frac{10}{3}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\\frac{1}{6}&-2\end{matrix}\right))\left(\begin{matrix}11\\\frac{10}{3}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3\times \frac{1}{6}\right)}&-\frac{-3}{-2-\left(-3\times \frac{1}{6}\right)}\\-\frac{\frac{1}{6}}{-2-\left(-3\times \frac{1}{6}\right)}&\frac{1}{-2-\left(-3\times \frac{1}{6}\right)}\end{matrix}\right)\left(\begin{matrix}11\\\frac{10}{3}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-2\\\frac{1}{9}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}11\\\frac{10}{3}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times 11-2\times \frac{10}{3}\\\frac{1}{9}\times 11-\frac{2}{3}\times \frac{10}{3}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
Do the arithmetic.
x=8,y=-1
Extract the matrix elements x and y.