Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2\left(3y-1\right)=-4
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x-6y+2=-4
Multiply -2 times 3y-1.
x-6y=-6
Subtract 2 from both sides of the equation.
x=6y-6
Add 6y to both sides of the equation.
-\left(-\left(6y-6\right)-7\right)+\frac{2}{3}y=1
Substitute -6+6y for x in the other equation, -\left(-x-7\right)+\frac{2}{3}y=1.
-\left(-6y+6-7\right)+\frac{2}{3}y=1
Multiply -1 times -6+6y.
-\left(-6y-1\right)+\frac{2}{3}y=1
Add 6 to -7.
6y+1+\frac{2}{3}y=1
Multiply -1 times -6y-1.
\frac{20}{3}y+1=1
Add 6y to \frac{2y}{3}.
\frac{20}{3}y=0
Subtract 1 from both sides of the equation.
y=0
Divide both sides of the equation by \frac{20}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-6
Substitute 0 for y in x=6y-6. Because the resulting equation contains only one variable, you can solve for x directly.
x=-6,y=0
The system is now solved.
x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
Put the equations in standard form and then use matrices to solve the system of equations.
x-2\left(3y-1\right)=-4
Simplify the first equation to put it in standard form.
x-6y+2=-4
Multiply -2 times 3y-1.
x-6y=-6
Subtract 2 from both sides of the equation.
-\left(-x-7\right)+\frac{2}{3}y=1
Simplify the second equation to put it in standard form.
x+7+\frac{2}{3}y=1
Multiply -1 times -x-7.
x+\frac{2}{3}y=-6
Subtract 7 from both sides of the equation.
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-6\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-6\right)}&-\frac{-6}{\frac{2}{3}-\left(-6\right)}\\-\frac{1}{\frac{2}{3}-\left(-6\right)}&\frac{1}{\frac{2}{3}-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{9}{10}\\-\frac{3}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-6\right)+\frac{9}{10}\left(-6\right)\\-\frac{3}{20}\left(-6\right)+\frac{3}{20}\left(-6\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
Do the arithmetic.
x=-6,y=0
Extract the matrix elements x and y.