\left\{ \begin{array} { l } { x - 150 = 2 ( y - 150 ) } \\ { x - 450 = 5 ( y - 450 ) } \end{array} \right.
Solve for x, y
x=950
y=550
Graph
Share
Copied to clipboard
x-150=2y-300
Consider the first equation. Use the distributive property to multiply 2 by y-150.
x-150-2y=-300
Subtract 2y from both sides.
x-2y=-300+150
Add 150 to both sides.
x-2y=-150
Add -300 and 150 to get -150.
x-450=5y-2250
Consider the second equation. Use the distributive property to multiply 5 by y-450.
x-450-5y=-2250
Subtract 5y from both sides.
x-5y=-2250+450
Add 450 to both sides.
x-5y=-1800
Add -2250 and 450 to get -1800.
x-2y=-150,x-5y=-1800
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-2y=-150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=2y-150
Add 2y to both sides of the equation.
2y-150-5y=-1800
Substitute -150+2y for x in the other equation, x-5y=-1800.
-3y-150=-1800
Add 2y to -5y.
-3y=-1650
Add 150 to both sides of the equation.
y=550
Divide both sides by -3.
x=2\times 550-150
Substitute 550 for y in x=2y-150. Because the resulting equation contains only one variable, you can solve for x directly.
x=1100-150
Multiply 2 times 550.
x=950
Add -150 to 1100.
x=950,y=550
The system is now solved.
x-150=2y-300
Consider the first equation. Use the distributive property to multiply 2 by y-150.
x-150-2y=-300
Subtract 2y from both sides.
x-2y=-300+150
Add 150 to both sides.
x-2y=-150
Add -300 and 150 to get -150.
x-450=5y-2250
Consider the second equation. Use the distributive property to multiply 5 by y-450.
x-450-5y=-2250
Subtract 5y from both sides.
x-5y=-2250+450
Add 450 to both sides.
x-5y=-1800
Add -2250 and 450 to get -1800.
x-2y=-150,x-5y=-1800
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-150\\-1800\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2\\1&-5\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-5\end{matrix}\right))\left(\begin{matrix}-150\\-1800\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-5\end{matrix}\right))\left(\begin{matrix}-150\\-1800\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-5\end{matrix}\right))\left(\begin{matrix}-150\\-1800\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-2\right)}&-\frac{-2}{-5-\left(-2\right)}\\-\frac{1}{-5-\left(-2\right)}&\frac{1}{-5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-150\\-1800\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}&-\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-150\\-1800\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\left(-150\right)-\frac{2}{3}\left(-1800\right)\\\frac{1}{3}\left(-150\right)-\frac{1}{3}\left(-1800\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}950\\550\end{matrix}\right)
Do the arithmetic.
x=950,y=550
Extract the matrix elements x and y.
x-150=2y-300
Consider the first equation. Use the distributive property to multiply 2 by y-150.
x-150-2y=-300
Subtract 2y from both sides.
x-2y=-300+150
Add 150 to both sides.
x-2y=-150
Add -300 and 150 to get -150.
x-450=5y-2250
Consider the second equation. Use the distributive property to multiply 5 by y-450.
x-450-5y=-2250
Subtract 5y from both sides.
x-5y=-2250+450
Add 450 to both sides.
x-5y=-1800
Add -2250 and 450 to get -1800.
x-2y=-150,x-5y=-1800
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-2y+5y=-150+1800
Subtract x-5y=-1800 from x-2y=-150 by subtracting like terms on each side of the equal sign.
-2y+5y=-150+1800
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
3y=-150+1800
Add -2y to 5y.
3y=1650
Add -150 to 1800.
y=550
Divide both sides by 3.
x-5\times 550=-1800
Substitute 550 for y in x-5y=-1800. Because the resulting equation contains only one variable, you can solve for x directly.
x-2750=-1800
Multiply -5 times 550.
x=950
Add 2750 to both sides of the equation.
x=950,y=550
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}