\left\{ \begin{array} { l } { x - 1 = - \frac { 3 } { 2 } ( y + 2 ) } \\ { x + y - 2 = 0 } \end{array} \right.
Solve for x, y
x=10
y=-8
Graph
Share
Copied to clipboard
x-1=-\frac{3}{2}y-3
Consider the first equation. Use the distributive property to multiply -\frac{3}{2} by y+2.
x-1+\frac{3}{2}y=-3
Add \frac{3}{2}y to both sides.
x+\frac{3}{2}y=-3+1
Add 1 to both sides.
x+\frac{3}{2}y=-2
Add -3 and 1 to get -2.
x+y=2
Consider the second equation. Add 2 to both sides. Anything plus zero gives itself.
x+\frac{3}{2}y=-2,x+y=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+\frac{3}{2}y=-2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-\frac{3}{2}y-2
Subtract \frac{3y}{2} from both sides of the equation.
-\frac{3}{2}y-2+y=2
Substitute -\frac{3y}{2}-2 for x in the other equation, x+y=2.
-\frac{1}{2}y-2=2
Add -\frac{3y}{2} to y.
-\frac{1}{2}y=4
Add 2 to both sides of the equation.
y=-8
Multiply both sides by -2.
x=-\frac{3}{2}\left(-8\right)-2
Substitute -8 for y in x=-\frac{3}{2}y-2. Because the resulting equation contains only one variable, you can solve for x directly.
x=12-2
Multiply -\frac{3}{2} times -8.
x=10
Add -2 to 12.
x=10,y=-8
The system is now solved.
x-1=-\frac{3}{2}y-3
Consider the first equation. Use the distributive property to multiply -\frac{3}{2} by y+2.
x-1+\frac{3}{2}y=-3
Add \frac{3}{2}y to both sides.
x+\frac{3}{2}y=-3+1
Add 1 to both sides.
x+\frac{3}{2}y=-2
Add -3 and 1 to get -2.
x+y=2
Consider the second equation. Add 2 to both sides. Anything plus zero gives itself.
x+\frac{3}{2}y=-2,x+y=2
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\frac{3}{2}}&-\frac{\frac{3}{2}}{1-\frac{3}{2}}\\-\frac{1}{1-\frac{3}{2}}&\frac{1}{1-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&3\\2&-2\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+3\times 2\\2\left(-2\right)-2\times 2\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-8\end{matrix}\right)
Do the arithmetic.
x=10,y=-8
Extract the matrix elements x and y.
x-1=-\frac{3}{2}y-3
Consider the first equation. Use the distributive property to multiply -\frac{3}{2} by y+2.
x-1+\frac{3}{2}y=-3
Add \frac{3}{2}y to both sides.
x+\frac{3}{2}y=-3+1
Add 1 to both sides.
x+\frac{3}{2}y=-2
Add -3 and 1 to get -2.
x+y=2
Consider the second equation. Add 2 to both sides. Anything plus zero gives itself.
x+\frac{3}{2}y=-2,x+y=2
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+\frac{3}{2}y-y=-2-2
Subtract x+y=2 from x+\frac{3}{2}y=-2 by subtracting like terms on each side of the equal sign.
\frac{3}{2}y-y=-2-2
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{2}y=-2-2
Add \frac{3y}{2} to -y.
\frac{1}{2}y=-4
Add -2 to -2.
y=-8
Multiply both sides by 2.
x-8=2
Substitute -8 for y in x+y=2. Because the resulting equation contains only one variable, you can solve for x directly.
x=10
Add 8 to both sides of the equation.
x=10,y=-8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}