\left\{ \begin{array} { l } { x - ( a + 1 ) = 3 - a } \\ { x + 2 ( a + 1 ) = 5 a } \end{array} \right.
Solve for x, a
x=4
a=2
Graph
Share
Copied to clipboard
x-a-1=3-a
Consider the first equation. To find the opposite of a+1, find the opposite of each term.
x-a-1+a=3
Add a to both sides.
x-1=3
Combine -a and a to get 0.
x=3+1
Add 1 to both sides.
x=4
Add 3 and 1 to get 4.
4+2\left(a+1\right)=5a
Consider the second equation. Insert the known values of variables into the equation.
4+2a+2=5a
Use the distributive property to multiply 2 by a+1.
6+2a=5a
Add 4 and 2 to get 6.
6+2a-5a=0
Subtract 5a from both sides.
6-3a=0
Combine 2a and -5a to get -3a.
-3a=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-6}{-3}
Divide both sides by -3.
a=2
Divide -6 by -3 to get 2.
x=4 a=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}