\left\{ \begin{array} { l } { x - \frac { y + 2 } { 5 } = z + 4 } \\ { y - \frac { z + 4 } { 2 } = x - 6 } \\ { z - \frac { x - 7 } { 3 } = y - 5 } \end{array} \right.
Solve for x, y, z
x=10
y=8
z=4
Share
Copied to clipboard
-2+5x-y=5z+20 -4+2y-z=2x-12 7+3z-x=3y-15
Multiply each equation by the least common multiple of denominators in it. Simplify.
y=-22+5x-5z
Solve -2+5x-y=5z+20 for y.
-4+2\left(-22+5x-5z\right)-z=2x-12 7+3z-x=3\left(-22+5x-5z\right)-15
Substitute -22+5x-5z for y in the second and third equation.
x=\frac{9}{2}+\frac{11}{8}z z=-\frac{44}{9}+\frac{8}{9}x
Solve these equations for x and z respectively.
z=-\frac{44}{9}+\frac{8}{9}\left(\frac{9}{2}+\frac{11}{8}z\right)
Substitute \frac{9}{2}+\frac{11}{8}z for x in the equation z=-\frac{44}{9}+\frac{8}{9}x.
z=4
Solve z=-\frac{44}{9}+\frac{8}{9}\left(\frac{9}{2}+\frac{11}{8}z\right) for z.
x=\frac{9}{2}+\frac{11}{8}\times 4
Substitute 4 for z in the equation x=\frac{9}{2}+\frac{11}{8}z.
x=10
Calculate x from x=\frac{9}{2}+\frac{11}{8}\times 4.
y=-22+5\times 10-5\times 4
Substitute 10 for x and 4 for z in the equation y=-22+5x-5z.
y=8
Calculate y from y=-22+5\times 10-5\times 4.
x=10 y=8 z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}