\left\{ \begin{array} { l } { x ( x - 2 ) - y ( y - 4 ) - 3 = ( x + y ) ( x - y ) - 9 } \\ { \frac { x } { 2 } - \frac { y } { 3 } = \frac { 5 } { 6 } } \end{array} \right.
Solve for x, y
x=1
y=-1
Graph
Share
Copied to clipboard
x^{2}-2x-y\left(y-4\right)-3=\left(x+y\right)\left(x-y\right)-9
Consider the first equation. Use the distributive property to multiply x by x-2.
x^{2}-2x-\left(y^{2}-4y\right)-3=\left(x+y\right)\left(x-y\right)-9
Use the distributive property to multiply y by y-4.
x^{2}-2x-y^{2}+4y-3=\left(x+y\right)\left(x-y\right)-9
To find the opposite of y^{2}-4y, find the opposite of each term.
x^{2}-2x-y^{2}+4y-3=x^{2}-y^{2}-9
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2x-y^{2}+4y-3-x^{2}=-y^{2}-9
Subtract x^{2} from both sides.
-2x-y^{2}+4y-3=-y^{2}-9
Combine x^{2} and -x^{2} to get 0.
-2x-y^{2}+4y-3+y^{2}=-9
Add y^{2} to both sides.
-2x+4y-3=-9
Combine -y^{2} and y^{2} to get 0.
-2x+4y=-9+3
Add 3 to both sides.
-2x+4y=-6
Add -9 and 3 to get -6.
3x-2y=5
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
-2x+4y=-6,3x-2y=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-2x+4y=-6
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-2x=-4y-6
Subtract 4y from both sides of the equation.
x=-\frac{1}{2}\left(-4y-6\right)
Divide both sides by -2.
x=2y+3
Multiply -\frac{1}{2} times -4y-6.
3\left(2y+3\right)-2y=5
Substitute 2y+3 for x in the other equation, 3x-2y=5.
6y+9-2y=5
Multiply 3 times 2y+3.
4y+9=5
Add 6y to -2y.
4y=-4
Subtract 9 from both sides of the equation.
y=-1
Divide both sides by 4.
x=2\left(-1\right)+3
Substitute -1 for y in x=2y+3. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2+3
Multiply 2 times -1.
x=1
Add 3 to -2.
x=1,y=-1
The system is now solved.
x^{2}-2x-y\left(y-4\right)-3=\left(x+y\right)\left(x-y\right)-9
Consider the first equation. Use the distributive property to multiply x by x-2.
x^{2}-2x-\left(y^{2}-4y\right)-3=\left(x+y\right)\left(x-y\right)-9
Use the distributive property to multiply y by y-4.
x^{2}-2x-y^{2}+4y-3=\left(x+y\right)\left(x-y\right)-9
To find the opposite of y^{2}-4y, find the opposite of each term.
x^{2}-2x-y^{2}+4y-3=x^{2}-y^{2}-9
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2x-y^{2}+4y-3-x^{2}=-y^{2}-9
Subtract x^{2} from both sides.
-2x-y^{2}+4y-3=-y^{2}-9
Combine x^{2} and -x^{2} to get 0.
-2x-y^{2}+4y-3+y^{2}=-9
Add y^{2} to both sides.
-2x+4y-3=-9
Combine -y^{2} and y^{2} to get 0.
-2x+4y=-9+3
Add 3 to both sides.
-2x+4y=-6
Add -9 and 3 to get -6.
3x-2y=5
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
-2x+4y=-6,3x-2y=5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-2&4\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-2&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-2&4\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-2&4\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-4\times 3}&-\frac{4}{-2\left(-2\right)-4\times 3}\\-\frac{3}{-2\left(-2\right)-4\times 3}&-\frac{2}{-2\left(-2\right)-4\times 3}\end{matrix}\right)\left(\begin{matrix}-6\\5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{2}\\\frac{3}{8}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-6\right)+\frac{1}{2}\times 5\\\frac{3}{8}\left(-6\right)+\frac{1}{4}\times 5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Do the arithmetic.
x=1,y=-1
Extract the matrix elements x and y.
x^{2}-2x-y\left(y-4\right)-3=\left(x+y\right)\left(x-y\right)-9
Consider the first equation. Use the distributive property to multiply x by x-2.
x^{2}-2x-\left(y^{2}-4y\right)-3=\left(x+y\right)\left(x-y\right)-9
Use the distributive property to multiply y by y-4.
x^{2}-2x-y^{2}+4y-3=\left(x+y\right)\left(x-y\right)-9
To find the opposite of y^{2}-4y, find the opposite of each term.
x^{2}-2x-y^{2}+4y-3=x^{2}-y^{2}-9
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2x-y^{2}+4y-3-x^{2}=-y^{2}-9
Subtract x^{2} from both sides.
-2x-y^{2}+4y-3=-y^{2}-9
Combine x^{2} and -x^{2} to get 0.
-2x-y^{2}+4y-3+y^{2}=-9
Add y^{2} to both sides.
-2x+4y-3=-9
Combine -y^{2} and y^{2} to get 0.
-2x+4y=-9+3
Add 3 to both sides.
-2x+4y=-6
Add -9 and 3 to get -6.
3x-2y=5
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
-2x+4y=-6,3x-2y=5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\left(-2\right)x+3\times 4y=3\left(-6\right),-2\times 3x-2\left(-2\right)y=-2\times 5
To make -2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by -2.
-6x+12y=-18,-6x+4y=-10
Simplify.
-6x+6x+12y-4y=-18+10
Subtract -6x+4y=-10 from -6x+12y=-18 by subtracting like terms on each side of the equal sign.
12y-4y=-18+10
Add -6x to 6x. Terms -6x and 6x cancel out, leaving an equation with only one variable that can be solved.
8y=-18+10
Add 12y to -4y.
8y=-8
Add -18 to 10.
y=-1
Divide both sides by 8.
3x-2\left(-1\right)=5
Substitute -1 for y in 3x-2y=5. Because the resulting equation contains only one variable, you can solve for x directly.
3x+2=5
Multiply -2 times -1.
3x=3
Subtract 2 from both sides of the equation.
x=1
Divide both sides by 3.
x=1,y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}