\left\{ \begin{array} { l } { x ( 1 - 2 x ) - y ( 1 - y ) = ( y - \sqrt { 2 } x ) ( y + \sqrt { 2 } x ) + 3 } \\ { 2 x - ( 2 y - \frac { 1 } { 4 } ) ^ { 2 } + 16 \frac { 1 } { 16 } = ( 2 y + 3 ) ( 3 - 2 y ) } \end{array} \right.
Solve for x, y
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
y = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
Graph
Share
Copied to clipboard
x-2x^{2}-y\left(1-y\right)=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
Consider the first equation. Use the distributive property to multiply x by 1-2x.
x-2x^{2}-\left(y-y^{2}\right)=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
Use the distributive property to multiply y by 1-y.
x-2x^{2}-y+y^{2}=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
To find the opposite of y-y^{2}, find the opposite of each term.
x-2x^{2}-y+y^{2}=y^{2}-\left(\sqrt{2}x\right)^{2}+3
Consider \left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-2x^{2}-y+y^{2}=y^{2}-\left(\sqrt{2}\right)^{2}x^{2}+3
Expand \left(\sqrt{2}x\right)^{2}.
x-2x^{2}-y+y^{2}=y^{2}-2x^{2}+3
The square of \sqrt{2} is 2.
x-2x^{2}-y+y^{2}-y^{2}=-2x^{2}+3
Subtract y^{2} from both sides.
x-2x^{2}-y=-2x^{2}+3
Combine y^{2} and -y^{2} to get 0.
x-2x^{2}-y+2x^{2}=3
Add 2x^{2} to both sides.
x-y=3
Combine -2x^{2} and 2x^{2} to get 0.
16\left(2x-\left(2y-\frac{1}{4}\right)^{2}\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Consider the second equation. Multiply both sides of the equation by 16.
16\left(2x-\left(4y^{2}-y+\frac{1}{16}\right)\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-\frac{1}{4}\right)^{2}.
16\left(2x-4y^{2}+y-\frac{1}{16}\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
To find the opposite of 4y^{2}-y+\frac{1}{16}, find the opposite of each term.
32x-64y^{2}+16y-1+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Use the distributive property to multiply 16 by 2x-4y^{2}+y-\frac{1}{16}.
32x-64y^{2}+16y-1+256+1=16\left(2y+3\right)\left(3-2y\right)
Multiply 16 and 16 to get 256.
32x-64y^{2}+16y+255+1=16\left(2y+3\right)\left(3-2y\right)
Add -1 and 256 to get 255.
32x-64y^{2}+16y+256=16\left(2y+3\right)\left(3-2y\right)
Add 255 and 1 to get 256.
32x-64y^{2}+16y+256=\left(32y+48\right)\left(3-2y\right)
Use the distributive property to multiply 16 by 2y+3.
32x-64y^{2}+16y+256=-64y^{2}+144
Use the distributive property to multiply 32y+48 by 3-2y and combine like terms.
32x-64y^{2}+16y+256+64y^{2}=144
Add 64y^{2} to both sides.
32x+16y+256=144
Combine -64y^{2} and 64y^{2} to get 0.
32x+16y=144-256
Subtract 256 from both sides.
32x+16y=-112
Subtract 256 from 144 to get -112.
x-y=3,32x+16y=-112
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=3
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+3
Add y to both sides of the equation.
32\left(y+3\right)+16y=-112
Substitute y+3 for x in the other equation, 32x+16y=-112.
32y+96+16y=-112
Multiply 32 times y+3.
48y+96=-112
Add 32y to 16y.
48y=-208
Subtract 96 from both sides of the equation.
y=-\frac{13}{3}
Divide both sides by 48.
x=-\frac{13}{3}+3
Substitute -\frac{13}{3} for y in x=y+3. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{4}{3}
Add 3 to -\frac{13}{3}.
x=-\frac{4}{3},y=-\frac{13}{3}
The system is now solved.
x-2x^{2}-y\left(1-y\right)=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
Consider the first equation. Use the distributive property to multiply x by 1-2x.
x-2x^{2}-\left(y-y^{2}\right)=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
Use the distributive property to multiply y by 1-y.
x-2x^{2}-y+y^{2}=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
To find the opposite of y-y^{2}, find the opposite of each term.
x-2x^{2}-y+y^{2}=y^{2}-\left(\sqrt{2}x\right)^{2}+3
Consider \left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-2x^{2}-y+y^{2}=y^{2}-\left(\sqrt{2}\right)^{2}x^{2}+3
Expand \left(\sqrt{2}x\right)^{2}.
x-2x^{2}-y+y^{2}=y^{2}-2x^{2}+3
The square of \sqrt{2} is 2.
x-2x^{2}-y+y^{2}-y^{2}=-2x^{2}+3
Subtract y^{2} from both sides.
x-2x^{2}-y=-2x^{2}+3
Combine y^{2} and -y^{2} to get 0.
x-2x^{2}-y+2x^{2}=3
Add 2x^{2} to both sides.
x-y=3
Combine -2x^{2} and 2x^{2} to get 0.
16\left(2x-\left(2y-\frac{1}{4}\right)^{2}\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Consider the second equation. Multiply both sides of the equation by 16.
16\left(2x-\left(4y^{2}-y+\frac{1}{16}\right)\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-\frac{1}{4}\right)^{2}.
16\left(2x-4y^{2}+y-\frac{1}{16}\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
To find the opposite of 4y^{2}-y+\frac{1}{16}, find the opposite of each term.
32x-64y^{2}+16y-1+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Use the distributive property to multiply 16 by 2x-4y^{2}+y-\frac{1}{16}.
32x-64y^{2}+16y-1+256+1=16\left(2y+3\right)\left(3-2y\right)
Multiply 16 and 16 to get 256.
32x-64y^{2}+16y+255+1=16\left(2y+3\right)\left(3-2y\right)
Add -1 and 256 to get 255.
32x-64y^{2}+16y+256=16\left(2y+3\right)\left(3-2y\right)
Add 255 and 1 to get 256.
32x-64y^{2}+16y+256=\left(32y+48\right)\left(3-2y\right)
Use the distributive property to multiply 16 by 2y+3.
32x-64y^{2}+16y+256=-64y^{2}+144
Use the distributive property to multiply 32y+48 by 3-2y and combine like terms.
32x-64y^{2}+16y+256+64y^{2}=144
Add 64y^{2} to both sides.
32x+16y+256=144
Combine -64y^{2} and 64y^{2} to get 0.
32x+16y=144-256
Subtract 256 from both sides.
32x+16y=-112
Subtract 256 from 144 to get -112.
x-y=3,32x+16y=-112
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\32&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-112\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\32&16\end{matrix}\right))\left(\begin{matrix}1&-1\\32&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\32&16\end{matrix}\right))\left(\begin{matrix}3\\-112\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\32&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\32&16\end{matrix}\right))\left(\begin{matrix}3\\-112\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\32&16\end{matrix}\right))\left(\begin{matrix}3\\-112\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{16-\left(-32\right)}&-\frac{-1}{16-\left(-32\right)}\\-\frac{32}{16-\left(-32\right)}&\frac{1}{16-\left(-32\right)}\end{matrix}\right)\left(\begin{matrix}3\\-112\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{48}\\-\frac{2}{3}&\frac{1}{48}\end{matrix}\right)\left(\begin{matrix}3\\-112\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3+\frac{1}{48}\left(-112\right)\\-\frac{2}{3}\times 3+\frac{1}{48}\left(-112\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}\\-\frac{13}{3}\end{matrix}\right)
Do the arithmetic.
x=-\frac{4}{3},y=-\frac{13}{3}
Extract the matrix elements x and y.
x-2x^{2}-y\left(1-y\right)=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
Consider the first equation. Use the distributive property to multiply x by 1-2x.
x-2x^{2}-\left(y-y^{2}\right)=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
Use the distributive property to multiply y by 1-y.
x-2x^{2}-y+y^{2}=\left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right)+3
To find the opposite of y-y^{2}, find the opposite of each term.
x-2x^{2}-y+y^{2}=y^{2}-\left(\sqrt{2}x\right)^{2}+3
Consider \left(y-\sqrt{2}x\right)\left(y+\sqrt{2}x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-2x^{2}-y+y^{2}=y^{2}-\left(\sqrt{2}\right)^{2}x^{2}+3
Expand \left(\sqrt{2}x\right)^{2}.
x-2x^{2}-y+y^{2}=y^{2}-2x^{2}+3
The square of \sqrt{2} is 2.
x-2x^{2}-y+y^{2}-y^{2}=-2x^{2}+3
Subtract y^{2} from both sides.
x-2x^{2}-y=-2x^{2}+3
Combine y^{2} and -y^{2} to get 0.
x-2x^{2}-y+2x^{2}=3
Add 2x^{2} to both sides.
x-y=3
Combine -2x^{2} and 2x^{2} to get 0.
16\left(2x-\left(2y-\frac{1}{4}\right)^{2}\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Consider the second equation. Multiply both sides of the equation by 16.
16\left(2x-\left(4y^{2}-y+\frac{1}{16}\right)\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-\frac{1}{4}\right)^{2}.
16\left(2x-4y^{2}+y-\frac{1}{16}\right)+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
To find the opposite of 4y^{2}-y+\frac{1}{16}, find the opposite of each term.
32x-64y^{2}+16y-1+16\times 16+1=16\left(2y+3\right)\left(3-2y\right)
Use the distributive property to multiply 16 by 2x-4y^{2}+y-\frac{1}{16}.
32x-64y^{2}+16y-1+256+1=16\left(2y+3\right)\left(3-2y\right)
Multiply 16 and 16 to get 256.
32x-64y^{2}+16y+255+1=16\left(2y+3\right)\left(3-2y\right)
Add -1 and 256 to get 255.
32x-64y^{2}+16y+256=16\left(2y+3\right)\left(3-2y\right)
Add 255 and 1 to get 256.
32x-64y^{2}+16y+256=\left(32y+48\right)\left(3-2y\right)
Use the distributive property to multiply 16 by 2y+3.
32x-64y^{2}+16y+256=-64y^{2}+144
Use the distributive property to multiply 32y+48 by 3-2y and combine like terms.
32x-64y^{2}+16y+256+64y^{2}=144
Add 64y^{2} to both sides.
32x+16y+256=144
Combine -64y^{2} and 64y^{2} to get 0.
32x+16y=144-256
Subtract 256 from both sides.
32x+16y=-112
Subtract 256 from 144 to get -112.
x-y=3,32x+16y=-112
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
32x+32\left(-1\right)y=32\times 3,32x+16y=-112
To make x and 32x equal, multiply all terms on each side of the first equation by 32 and all terms on each side of the second by 1.
32x-32y=96,32x+16y=-112
Simplify.
32x-32x-32y-16y=96+112
Subtract 32x+16y=-112 from 32x-32y=96 by subtracting like terms on each side of the equal sign.
-32y-16y=96+112
Add 32x to -32x. Terms 32x and -32x cancel out, leaving an equation with only one variable that can be solved.
-48y=96+112
Add -32y to -16y.
-48y=208
Add 96 to 112.
y=-\frac{13}{3}
Divide both sides by -48.
32x+16\left(-\frac{13}{3}\right)=-112
Substitute -\frac{13}{3} for y in 32x+16y=-112. Because the resulting equation contains only one variable, you can solve for x directly.
32x-\frac{208}{3}=-112
Multiply 16 times -\frac{13}{3}.
32x=-\frac{128}{3}
Add \frac{208}{3} to both sides of the equation.
x=-\frac{4}{3}
Divide both sides by 32.
x=-\frac{4}{3},y=-\frac{13}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}