\left\{ \begin{array} { l } { x ^ { 2 } - y ^ { 2 } = 4 } \\ { y = 2 ( x - 1 ) } \end{array} \right.
Solve for x, y (complex solution)
x=\frac{-2\sqrt{2}i+4}{3}\approx 1.333333333-0.942809042i\text{, }y=\frac{-4\sqrt{2}i+2}{3}\approx 0.666666667-1.885618083i
x=\frac{4+2\sqrt{2}i}{3}\approx 1.333333333+0.942809042i\text{, }y=\frac{2+4\sqrt{2}i}{3}\approx 0.666666667+1.885618083i
Graph
Share
Copied to clipboard
y=2x-2
Consider the second equation. Use the distributive property to multiply 2 by x-1.
x^{2}-\left(2x-2\right)^{2}=4
Substitute 2x-2 for y in the other equation, x^{2}-y^{2}=4.
x^{2}-\left(4x^{2}-8x+4\right)=4
Square 2x-2.
x^{2}-4x^{2}+8x-4=4
Multiply -1 times 4x^{2}-8x+4.
-3x^{2}+8x-4=4
Add x^{2} to -4x^{2}.
-3x^{2}+8x-8=0
Subtract 4 from both sides of the equation.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-2^{2} for a, -\left(-2\right)\times 2\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
Square -\left(-2\right)\times 2\times 2.
x=\frac{-8±\sqrt{64+12\left(-8\right)}}{2\left(-3\right)}
Multiply -4 times 1-2^{2}.
x=\frac{-8±\sqrt{64-96}}{2\left(-3\right)}
Multiply 12 times -8.
x=\frac{-8±\sqrt{-32}}{2\left(-3\right)}
Add 64 to -96.
x=\frac{-8±4\sqrt{2}i}{2\left(-3\right)}
Take the square root of -32.
x=\frac{-8±4\sqrt{2}i}{-6}
Multiply 2 times 1-2^{2}.
x=\frac{-8+2^{\frac{5}{2}}i}{-6}
Now solve the equation x=\frac{-8±4\sqrt{2}i}{-6} when ± is plus. Add -8 to 4i\sqrt{2}.
x=\frac{-2\sqrt{2}i+4}{3}
Divide -8+i\times 2^{\frac{5}{2}} by -6.
x=\frac{-2^{\frac{5}{2}}i-8}{-6}
Now solve the equation x=\frac{-8±4\sqrt{2}i}{-6} when ± is minus. Subtract 4i\sqrt{2} from -8.
x=\frac{4+2\sqrt{2}i}{3}
Divide -8-i\times 2^{\frac{5}{2}} by -6.
y=2\times \frac{-2\sqrt{2}i+4}{3}-2
There are two solutions for x: \frac{4-2i\sqrt{2}}{3} and \frac{4+2i\sqrt{2}}{3}. Substitute \frac{4-2i\sqrt{2}}{3} for x in the equation y=2x-2 to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{4+2\sqrt{2}i}{3}-2
Now substitute \frac{4+2i\sqrt{2}}{3} for x in the equation y=2x-2 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{-2\sqrt{2}i+4}{3}-2,x=\frac{-2\sqrt{2}i+4}{3}\text{ or }y=2\times \frac{4+2\sqrt{2}i}{3}-2,x=\frac{4+2\sqrt{2}i}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}