\left\{ \begin{array} { l } { x ^ { 2 } - 4 y ^ { 2 } = 9 } \\ { 3 x + 4 y = 7 } \end{array} \right.
Solve for x, y
x=\frac{17}{5}=3.4\text{, }y=-\frac{4}{5}=-0.8
x=5\text{, }y=-2
Graph
Share
Copied to clipboard
3x+4y=7,-4y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=7
Solve 3x+4y=7 for x by isolating x on the left hand side of the equal sign.
3x=-4y+7
Subtract 4y from both sides of the equation.
x=-\frac{4}{3}y+\frac{7}{3}
Divide both sides by 3.
-4y^{2}+\left(-\frac{4}{3}y+\frac{7}{3}\right)^{2}=9
Substitute -\frac{4}{3}y+\frac{7}{3} for x in the other equation, -4y^{2}+x^{2}=9.
-4y^{2}+\frac{16}{9}y^{2}-\frac{56}{9}y+\frac{49}{9}=9
Square -\frac{4}{3}y+\frac{7}{3}.
-\frac{20}{9}y^{2}-\frac{56}{9}y+\frac{49}{9}=9
Add -4y^{2} to \frac{16}{9}y^{2}.
-\frac{20}{9}y^{2}-\frac{56}{9}y-\frac{32}{9}=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-\frac{56}{9}\right)±\sqrt{\left(-\frac{56}{9}\right)^{2}-4\left(-\frac{20}{9}\right)\left(-\frac{32}{9}\right)}}{2\left(-\frac{20}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4+1\left(-\frac{4}{3}\right)^{2} for a, 1\times \frac{7}{3}\left(-\frac{4}{3}\right)\times 2 for b, and -\frac{32}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{56}{9}\right)±\sqrt{\frac{3136}{81}-4\left(-\frac{20}{9}\right)\left(-\frac{32}{9}\right)}}{2\left(-\frac{20}{9}\right)}
Square 1\times \frac{7}{3}\left(-\frac{4}{3}\right)\times 2.
y=\frac{-\left(-\frac{56}{9}\right)±\sqrt{\frac{3136}{81}+\frac{80}{9}\left(-\frac{32}{9}\right)}}{2\left(-\frac{20}{9}\right)}
Multiply -4 times -4+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-\frac{56}{9}\right)±\sqrt{\frac{3136-2560}{81}}}{2\left(-\frac{20}{9}\right)}
Multiply \frac{80}{9} times -\frac{32}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{56}{9}\right)±\sqrt{\frac{64}{9}}}{2\left(-\frac{20}{9}\right)}
Add \frac{3136}{81} to -\frac{2560}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{56}{9}\right)±\frac{8}{3}}{2\left(-\frac{20}{9}\right)}
Take the square root of \frac{64}{9}.
y=\frac{\frac{56}{9}±\frac{8}{3}}{2\left(-\frac{20}{9}\right)}
The opposite of 1\times \frac{7}{3}\left(-\frac{4}{3}\right)\times 2 is \frac{56}{9}.
y=\frac{\frac{56}{9}±\frac{8}{3}}{-\frac{40}{9}}
Multiply 2 times -4+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{\frac{80}{9}}{-\frac{40}{9}}
Now solve the equation y=\frac{\frac{56}{9}±\frac{8}{3}}{-\frac{40}{9}} when ± is plus. Add \frac{56}{9} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-2
Divide \frac{80}{9} by -\frac{40}{9} by multiplying \frac{80}{9} by the reciprocal of -\frac{40}{9}.
y=\frac{\frac{32}{9}}{-\frac{40}{9}}
Now solve the equation y=\frac{\frac{56}{9}±\frac{8}{3}}{-\frac{40}{9}} when ± is minus. Subtract \frac{8}{3} from \frac{56}{9} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{4}{5}
Divide \frac{32}{9} by -\frac{40}{9} by multiplying \frac{32}{9} by the reciprocal of -\frac{40}{9}.
x=-\frac{4}{3}\left(-2\right)+\frac{7}{3}
There are two solutions for y: -2 and -\frac{4}{5}. Substitute -2 for y in the equation x=-\frac{4}{3}y+\frac{7}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{8+7}{3}
Multiply -\frac{4}{3} times -2.
x=5
Add -2\left(-\frac{4}{3}\right) to \frac{7}{3}.
x=-\frac{4}{3}\left(-\frac{4}{5}\right)+\frac{7}{3}
Now substitute -\frac{4}{5} for y in the equation x=-\frac{4}{3}y+\frac{7}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{16}{15}+\frac{7}{3}
Multiply -\frac{4}{3} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{17}{5}
Add -\frac{4}{3}\left(-\frac{4}{5}\right) to \frac{7}{3}.
x=5,y=-2\text{ or }x=\frac{17}{5},y=-\frac{4}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}