\left\{ \begin{array} { l } { x ^ { 2 } - 3 y ^ { 2 } = 4 } \\ { x + y = 6 } \end{array} \right.
Solve for x, y
x=14\text{, }y=-8
x=4\text{, }y=2
Graph
Share
Copied to clipboard
x+y=6,-3y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=6
Solve x+y=6 for x by isolating x on the left hand side of the equal sign.
x=-y+6
Subtract y from both sides of the equation.
-3y^{2}+\left(-y+6\right)^{2}=4
Substitute -y+6 for x in the other equation, -3y^{2}+x^{2}=4.
-3y^{2}+y^{2}-12y+36=4
Square -y+6.
-2y^{2}-12y+36=4
Add -3y^{2} to y^{2}.
-2y^{2}-12y+32=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-2\right)\times 32}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3+1\left(-1\right)^{2} for a, 1\times 6\left(-1\right)\times 2 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\left(-2\right)\times 32}}{2\left(-2\right)}
Square 1\times 6\left(-1\right)\times 2.
y=\frac{-\left(-12\right)±\sqrt{144+8\times 32}}{2\left(-2\right)}
Multiply -4 times -3+1\left(-1\right)^{2}.
y=\frac{-\left(-12\right)±\sqrt{144+256}}{2\left(-2\right)}
Multiply 8 times 32.
y=\frac{-\left(-12\right)±\sqrt{400}}{2\left(-2\right)}
Add 144 to 256.
y=\frac{-\left(-12\right)±20}{2\left(-2\right)}
Take the square root of 400.
y=\frac{12±20}{2\left(-2\right)}
The opposite of 1\times 6\left(-1\right)\times 2 is 12.
y=\frac{12±20}{-4}
Multiply 2 times -3+1\left(-1\right)^{2}.
y=\frac{32}{-4}
Now solve the equation y=\frac{12±20}{-4} when ± is plus. Add 12 to 20.
y=-8
Divide 32 by -4.
y=-\frac{8}{-4}
Now solve the equation y=\frac{12±20}{-4} when ± is minus. Subtract 20 from 12.
y=2
Divide -8 by -4.
x=-\left(-8\right)+6
There are two solutions for y: -8 and 2. Substitute -8 for y in the equation x=-y+6 to find the corresponding solution for x that satisfies both equations.
x=8+6
Multiply -1 times -8.
x=14
Add -8\left(-1\right) to 6.
x=-2+6
Now substitute 2 for y in the equation x=-y+6 and solve to find the corresponding solution for x that satisfies both equations.
x=4
Add -2 to 6.
x=14,y=-8\text{ or }x=4,y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}