Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-x=2
Consider the second equation. Subtract x from both sides.
y-x=2,x^{2}+y^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=2
Solve y-x=2 for y by isolating y on the left hand side of the equal sign.
y=x+2
Subtract -x from both sides of the equation.
x^{2}+\left(x+2\right)^{2}=9
Substitute x+2 for y in the other equation, x^{2}+y^{2}=9.
x^{2}+x^{2}+4x+4=9
Square x+2.
2x^{2}+4x+4=9
Add x^{2} to x^{2}.
2x^{2}+4x-5=0
Subtract 9 from both sides of the equation.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 2\times 1\times 2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
Square 1\times 2\times 1\times 2.
x=\frac{-4±\sqrt{16-8\left(-5\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-4±\sqrt{16+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-4±\sqrt{56}}{2\times 2}
Add 16 to 40.
x=\frac{-4±2\sqrt{14}}{2\times 2}
Take the square root of 56.
x=\frac{-4±2\sqrt{14}}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{2\sqrt{14}-4}{4}
Now solve the equation x=\frac{-4±2\sqrt{14}}{4} when ± is plus. Add -4 to 2\sqrt{14}.
x=\frac{\sqrt{14}}{2}-1
Divide -4+2\sqrt{14} by 4.
x=\frac{-2\sqrt{14}-4}{4}
Now solve the equation x=\frac{-4±2\sqrt{14}}{4} when ± is minus. Subtract 2\sqrt{14} from -4.
x=-\frac{\sqrt{14}}{2}-1
Divide -4-2\sqrt{14} by 4.
y=\frac{\sqrt{14}}{2}-1+2
There are two solutions for x: -1+\frac{\sqrt{14}}{2} and -1-\frac{\sqrt{14}}{2}. Substitute -1+\frac{\sqrt{14}}{2} for x in the equation y=x+2 to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{14}}{2}+1
Add 1\left(-1+\frac{\sqrt{14}}{2}\right) to 2.
y=-\frac{\sqrt{14}}{2}-1+2
Now substitute -1-\frac{\sqrt{14}}{2} for x in the equation y=x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{\sqrt{14}}{2}+1
Add 1\left(-1-\frac{\sqrt{14}}{2}\right) to 2.
y=\frac{\sqrt{14}}{2}+1,x=\frac{\sqrt{14}}{2}-1\text{ or }y=-\frac{\sqrt{14}}{2}+1,x=-\frac{\sqrt{14}}{2}-1
The system is now solved.