\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 9 } \\ { y = x + 2 } \end{array} \right.
Solve for x, y
x=-\frac{\sqrt{14}}{2}-1\approx -2.870828693\text{, }y=-\frac{\sqrt{14}}{2}+1\approx -0.870828693
x=\frac{\sqrt{14}}{2}-1\approx 0.870828693\text{, }y=\frac{\sqrt{14}}{2}+1\approx 2.870828693
Graph
Share
Copied to clipboard
y-x=2
Consider the second equation. Subtract x from both sides.
y-x=2,x^{2}+y^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=2
Solve y-x=2 for y by isolating y on the left hand side of the equal sign.
y=x+2
Subtract -x from both sides of the equation.
x^{2}+\left(x+2\right)^{2}=9
Substitute x+2 for y in the other equation, x^{2}+y^{2}=9.
x^{2}+x^{2}+4x+4=9
Square x+2.
2x^{2}+4x+4=9
Add x^{2} to x^{2}.
2x^{2}+4x-5=0
Subtract 9 from both sides of the equation.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 2\times 1\times 2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
Square 1\times 2\times 1\times 2.
x=\frac{-4±\sqrt{16-8\left(-5\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-4±\sqrt{16+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-4±\sqrt{56}}{2\times 2}
Add 16 to 40.
x=\frac{-4±2\sqrt{14}}{2\times 2}
Take the square root of 56.
x=\frac{-4±2\sqrt{14}}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{2\sqrt{14}-4}{4}
Now solve the equation x=\frac{-4±2\sqrt{14}}{4} when ± is plus. Add -4 to 2\sqrt{14}.
x=\frac{\sqrt{14}}{2}-1
Divide -4+2\sqrt{14} by 4.
x=\frac{-2\sqrt{14}-4}{4}
Now solve the equation x=\frac{-4±2\sqrt{14}}{4} when ± is minus. Subtract 2\sqrt{14} from -4.
x=-\frac{\sqrt{14}}{2}-1
Divide -4-2\sqrt{14} by 4.
y=\frac{\sqrt{14}}{2}-1+2
There are two solutions for x: -1+\frac{\sqrt{14}}{2} and -1-\frac{\sqrt{14}}{2}. Substitute -1+\frac{\sqrt{14}}{2} for x in the equation y=x+2 to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{14}}{2}+1
Add 1\left(-1+\frac{\sqrt{14}}{2}\right) to 2.
y=-\frac{\sqrt{14}}{2}-1+2
Now substitute -1-\frac{\sqrt{14}}{2} for x in the equation y=x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{\sqrt{14}}{2}+1
Add 1\left(-1-\frac{\sqrt{14}}{2}\right) to 2.
y=\frac{\sqrt{14}}{2}+1,x=\frac{\sqrt{14}}{2}-1\text{ or }y=-\frac{\sqrt{14}}{2}+1,x=-\frac{\sqrt{14}}{2}-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}