Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=4,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=4
Solve x+2y=4 for x by isolating x on the left hand side of the equal sign.
x=-2y+4
Subtract 2y from both sides of the equation.
y^{2}+\left(-2y+4\right)^{2}=9
Substitute -2y+4 for x in the other equation, y^{2}+x^{2}=9.
y^{2}+4y^{2}-16y+16=9
Square -2y+4.
5y^{2}-16y+16=9
Add y^{2} to 4y^{2}.
5y^{2}-16y+7=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\times 7}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-2\right)^{2} for a, 1\times 4\left(-2\right)\times 2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 5\times 7}}{2\times 5}
Square 1\times 4\left(-2\right)\times 2.
y=\frac{-\left(-16\right)±\sqrt{256-20\times 7}}{2\times 5}
Multiply -4 times 1+1\left(-2\right)^{2}.
y=\frac{-\left(-16\right)±\sqrt{256-140}}{2\times 5}
Multiply -20 times 7.
y=\frac{-\left(-16\right)±\sqrt{116}}{2\times 5}
Add 256 to -140.
y=\frac{-\left(-16\right)±2\sqrt{29}}{2\times 5}
Take the square root of 116.
y=\frac{16±2\sqrt{29}}{2\times 5}
The opposite of 1\times 4\left(-2\right)\times 2 is 16.
y=\frac{16±2\sqrt{29}}{10}
Multiply 2 times 1+1\left(-2\right)^{2}.
y=\frac{2\sqrt{29}+16}{10}
Now solve the equation y=\frac{16±2\sqrt{29}}{10} when ± is plus. Add 16 to 2\sqrt{29}.
y=\frac{\sqrt{29}+8}{5}
Divide 16+2\sqrt{29} by 10.
y=\frac{16-2\sqrt{29}}{10}
Now solve the equation y=\frac{16±2\sqrt{29}}{10} when ± is minus. Subtract 2\sqrt{29} from 16.
y=\frac{8-\sqrt{29}}{5}
Divide 16-2\sqrt{29} by 10.
x=-2\times \frac{\sqrt{29}+8}{5}+4
There are two solutions for y: \frac{8+\sqrt{29}}{5} and \frac{8-\sqrt{29}}{5}. Substitute \frac{8+\sqrt{29}}{5} for y in the equation x=-2y+4 to find the corresponding solution for x that satisfies both equations.
x=-2\times \frac{8-\sqrt{29}}{5}+4
Now substitute \frac{8-\sqrt{29}}{5} for y in the equation x=-2y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-2\times \frac{\sqrt{29}+8}{5}+4,y=\frac{\sqrt{29}+8}{5}\text{ or }x=-2\times \frac{8-\sqrt{29}}{5}+4,y=\frac{8-\sqrt{29}}{5}
The system is now solved.