\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 6 } \\ { x + y = 2 } \end{array} \right.
Solve for x, y
x=\sqrt{2}+1\approx 2.414213562\text{, }y=1-\sqrt{2}\approx -0.414213562
x=1-\sqrt{2}\approx -0.414213562\text{, }y=\sqrt{2}+1\approx 2.414213562
Graph
Share
Copied to clipboard
x+y=2,y^{2}+x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=2
Solve x+y=2 for x by isolating x on the left hand side of the equal sign.
x=-y+2
Subtract y from both sides of the equation.
y^{2}+\left(-y+2\right)^{2}=6
Substitute -y+2 for x in the other equation, y^{2}+x^{2}=6.
y^{2}+y^{2}-4y+4=6
Square -y+2.
2y^{2}-4y+4=6
Add y^{2} to y^{2}.
2y^{2}-4y-2=0
Subtract 6 from both sides of the equation.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 2\left(-1\right)\times 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-2\right)}}{2\times 2}
Square 1\times 2\left(-1\right)\times 2.
y=\frac{-\left(-4\right)±\sqrt{16-8\left(-2\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 2}
Multiply -8 times -2.
y=\frac{-\left(-4\right)±\sqrt{32}}{2\times 2}
Add 16 to 16.
y=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 2}
Take the square root of 32.
y=\frac{4±4\sqrt{2}}{2\times 2}
The opposite of 1\times 2\left(-1\right)\times 2 is 4.
y=\frac{4±4\sqrt{2}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{4\sqrt{2}+4}{4}
Now solve the equation y=\frac{4±4\sqrt{2}}{4} when ± is plus. Add 4 to 4\sqrt{2}.
y=\sqrt{2}+1
Divide 4+4\sqrt{2} by 4.
y=\frac{4-4\sqrt{2}}{4}
Now solve the equation y=\frac{4±4\sqrt{2}}{4} when ± is minus. Subtract 4\sqrt{2} from 4.
y=1-\sqrt{2}
Divide 4-4\sqrt{2} by 4.
x=-\left(\sqrt{2}+1\right)+2
There are two solutions for y: 1+\sqrt{2} and 1-\sqrt{2}. Substitute 1+\sqrt{2} for y in the equation x=-y+2 to find the corresponding solution for x that satisfies both equations.
x=-\left(1-\sqrt{2}\right)+2
Now substitute 1-\sqrt{2} for y in the equation x=-y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\sqrt{2}+1\right)+2,y=\sqrt{2}+1\text{ or }x=-\left(1-\sqrt{2}\right)+2,y=1-\sqrt{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}