Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=2,y^{2}+x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=2
Solve x+y=2 for x by isolating x on the left hand side of the equal sign.
x=-y+2
Subtract y from both sides of the equation.
y^{2}+\left(-y+2\right)^{2}=6
Substitute -y+2 for x in the other equation, y^{2}+x^{2}=6.
y^{2}+y^{2}-4y+4=6
Square -y+2.
2y^{2}-4y+4=6
Add y^{2} to y^{2}.
2y^{2}-4y-2=0
Subtract 6 from both sides of the equation.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 2\left(-1\right)\times 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-2\right)}}{2\times 2}
Square 1\times 2\left(-1\right)\times 2.
y=\frac{-\left(-4\right)±\sqrt{16-8\left(-2\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 2}
Multiply -8 times -2.
y=\frac{-\left(-4\right)±\sqrt{32}}{2\times 2}
Add 16 to 16.
y=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 2}
Take the square root of 32.
y=\frac{4±4\sqrt{2}}{2\times 2}
The opposite of 1\times 2\left(-1\right)\times 2 is 4.
y=\frac{4±4\sqrt{2}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{4\sqrt{2}+4}{4}
Now solve the equation y=\frac{4±4\sqrt{2}}{4} when ± is plus. Add 4 to 4\sqrt{2}.
y=\sqrt{2}+1
Divide 4+4\sqrt{2} by 4.
y=\frac{4-4\sqrt{2}}{4}
Now solve the equation y=\frac{4±4\sqrt{2}}{4} when ± is minus. Subtract 4\sqrt{2} from 4.
y=1-\sqrt{2}
Divide 4-4\sqrt{2} by 4.
x=-\left(\sqrt{2}+1\right)+2
There are two solutions for y: 1+\sqrt{2} and 1-\sqrt{2}. Substitute 1+\sqrt{2} for y in the equation x=-y+2 to find the corresponding solution for x that satisfies both equations.
x=-\left(1-\sqrt{2}\right)+2
Now substitute 1-\sqrt{2} for y in the equation x=-y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\sqrt{2}+1\right)+2,y=\sqrt{2}+1\text{ or }x=-\left(1-\sqrt{2}\right)+2,y=1-\sqrt{2}
The system is now solved.