\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 4 } \\ { x + y = 4 } \end{array} \right.
Solve for x, y (complex solution)
x=2+\sqrt{2}i\approx 2+1.414213562i\text{, }y=-\sqrt{2}i+2\approx 2-1.414213562i
x=-\sqrt{2}i+2\approx 2-1.414213562i\text{, }y=2+\sqrt{2}i\approx 2+1.414213562i
Graph
Share
Copied to clipboard
x+y=4
Solve x+y=4 for x by isolating x on the left hand side of the equal sign.
x=-y+4
Subtract y from both sides of the equation.
y^{2}+\left(-y+4\right)^{2}=4
Substitute -y+4 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+y^{2}-8y+16=4
Square -y+4.
2y^{2}-8y+16=4
Add y^{2} to y^{2}.
2y^{2}-8y+12=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 4\left(-1\right)\times 2 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 12}}{2\times 2}
Square 1\times 4\left(-1\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-8\times 12}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64-96}}{2\times 2}
Multiply -8 times 12.
y=\frac{-\left(-8\right)±\sqrt{-32}}{2\times 2}
Add 64 to -96.
y=\frac{-\left(-8\right)±4\sqrt{2}i}{2\times 2}
Take the square root of -32.
y=\frac{8±4\sqrt{2}i}{2\times 2}
The opposite of 1\times 4\left(-1\right)\times 2 is 8.
y=\frac{8±4\sqrt{2}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{8+2^{\frac{5}{2}}i}{4}
Now solve the equation y=\frac{8±4\sqrt{2}i}{4} when ± is plus. Add 8 to 4i\sqrt{2}.
y=2+\sqrt{2}i
Divide 8+i\times 2^{\frac{5}{2}} by 4.
y=\frac{-2^{\frac{5}{2}}i+8}{4}
Now solve the equation y=\frac{8±4\sqrt{2}i}{4} when ± is minus. Subtract 4i\sqrt{2} from 8.
y=-\sqrt{2}i+2
Divide 8-i\times 2^{\frac{5}{2}} by 4.
x=-\left(2+\sqrt{2}i\right)+4
There are two solutions for y: 2+i\sqrt{2} and 2-i\sqrt{2}. Substitute 2+i\sqrt{2} for y in the equation x=-y+4 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\sqrt{2}i+2\right)+4
Now substitute 2-i\sqrt{2} for y in the equation x=-y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(2+\sqrt{2}i\right)+4,y=2+\sqrt{2}i\text{ or }x=-\left(-\sqrt{2}i+2\right)+4,y=-\sqrt{2}i+2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}