Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+y=2,y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+y=2
Solve 4x+y=2 for x by isolating x on the left hand side of the equal sign.
4x=-y+2
Subtract y from both sides of the equation.
x=-\frac{1}{4}y+\frac{1}{2}
Divide both sides by 4.
y^{2}+\left(-\frac{1}{4}y+\frac{1}{2}\right)^{2}=4
Substitute -\frac{1}{4}y+\frac{1}{2} for x in the other equation, y^{2}+x^{2}=4.
y^{2}+\frac{1}{16}y^{2}-\frac{1}{4}y+\frac{1}{4}=4
Square -\frac{1}{4}y+\frac{1}{2}.
\frac{17}{16}y^{2}-\frac{1}{4}y+\frac{1}{4}=4
Add y^{2} to \frac{1}{16}y^{2}.
\frac{17}{16}y^{2}-\frac{1}{4}y-\frac{15}{4}=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\left(-\frac{1}{4}\right)^{2}-4\times \frac{17}{16}\left(-\frac{15}{4}\right)}}{2\times \frac{17}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{4}\right)^{2} for a, 1\times \frac{1}{2}\left(-\frac{1}{4}\right)\times 2 for b, and -\frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}-4\times \frac{17}{16}\left(-\frac{15}{4}\right)}}{2\times \frac{17}{16}}
Square 1\times \frac{1}{2}\left(-\frac{1}{4}\right)\times 2.
y=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}-\frac{17}{4}\left(-\frac{15}{4}\right)}}{2\times \frac{17}{16}}
Multiply -4 times 1+1\left(-\frac{1}{4}\right)^{2}.
y=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1+255}{16}}}{2\times \frac{17}{16}}
Multiply -\frac{17}{4} times -\frac{15}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{1}{4}\right)±\sqrt{16}}{2\times \frac{17}{16}}
Add \frac{1}{16} to \frac{255}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{1}{4}\right)±4}{2\times \frac{17}{16}}
Take the square root of 16.
y=\frac{\frac{1}{4}±4}{2\times \frac{17}{16}}
The opposite of 1\times \frac{1}{2}\left(-\frac{1}{4}\right)\times 2 is \frac{1}{4}.
y=\frac{\frac{1}{4}±4}{\frac{17}{8}}
Multiply 2 times 1+1\left(-\frac{1}{4}\right)^{2}.
y=\frac{\frac{17}{4}}{\frac{17}{8}}
Now solve the equation y=\frac{\frac{1}{4}±4}{\frac{17}{8}} when ± is plus. Add \frac{1}{4} to 4.
y=2
Divide \frac{17}{4} by \frac{17}{8} by multiplying \frac{17}{4} by the reciprocal of \frac{17}{8}.
y=-\frac{\frac{15}{4}}{\frac{17}{8}}
Now solve the equation y=\frac{\frac{1}{4}±4}{\frac{17}{8}} when ± is minus. Subtract 4 from \frac{1}{4}.
y=-\frac{30}{17}
Divide -\frac{15}{4} by \frac{17}{8} by multiplying -\frac{15}{4} by the reciprocal of \frac{17}{8}.
x=-\frac{1}{4}\times 2+\frac{1}{2}
There are two solutions for y: 2 and -\frac{30}{17}. Substitute 2 for y in the equation x=-\frac{1}{4}y+\frac{1}{2} to find the corresponding solution for x that satisfies both equations.
x=\frac{-1+1}{2}
Multiply -\frac{1}{4} times 2.
x=0
Add -\frac{1}{4}\times 2 to \frac{1}{2}.
x=-\frac{1}{4}\left(-\frac{30}{17}\right)+\frac{1}{2}
Now substitute -\frac{30}{17} for y in the equation x=-\frac{1}{4}y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{15}{34}+\frac{1}{2}
Multiply -\frac{1}{4} times -\frac{30}{17} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{16}{17}
Add -\frac{30}{17}\left(-\frac{1}{4}\right) to \frac{1}{2}.
x=0,y=2\text{ or }x=\frac{16}{17},y=-\frac{30}{17}
The system is now solved.