Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2\sqrt{2}+y=3\sqrt{3}
Consider the second equation. Add y to both sides.
x+y=3\sqrt{3}-2\sqrt{2}
Subtract 2\sqrt{2} from both sides.
x+y=3\sqrt{3}-2\sqrt{2},y^{2}+x^{2}=35
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=3\sqrt{3}-2\sqrt{2}
Solve x+y=3\sqrt{3}-2\sqrt{2} for x by isolating x on the left hand side of the equal sign.
x=-y+3\sqrt{3}-2\sqrt{2}
Subtract y from both sides of the equation.
y^{2}+\left(-y+3\sqrt{3}-2\sqrt{2}\right)^{2}=35
Substitute -y+3\sqrt{3}-2\sqrt{2} for x in the other equation, y^{2}+x^{2}=35.
y^{2}+y^{2}+\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)y+\left(3\sqrt{3}-2\sqrt{2}\right)^{2}=35
Square -y+3\sqrt{3}-2\sqrt{2}.
2y^{2}+\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)y+\left(3\sqrt{3}-2\sqrt{2}\right)^{2}=35
Add y^{2} to y^{2}.
2y^{2}+\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)y+\left(3\sqrt{3}-2\sqrt{2}\right)^{2}-35=0
Subtract 35 from both sides of the equation.
y=\frac{-\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)±\sqrt{\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)^{2}-4\times 2\left(-12\sqrt{6}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\times 2\left(3\sqrt{3}-2\sqrt{2}\right) for b, and -12\sqrt{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)±\sqrt{140-48\sqrt{6}-4\times 2\left(-12\sqrt{6}\right)}}{2\times 2}
Square 1\left(-1\right)\times 2\left(3\sqrt{3}-2\sqrt{2}\right).
y=\frac{-\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)±\sqrt{140-48\sqrt{6}-8\left(-12\sqrt{6}\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)±\sqrt{140-48\sqrt{6}+96\sqrt{6}}}{2\times 2}
Multiply -8 times -12\sqrt{6}.
y=\frac{-\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)±\sqrt{48\sqrt{6}+140}}{2\times 2}
Add 140-48\sqrt{6} to 96\sqrt{6}.
y=\frac{-\left(-2\left(3\sqrt{3}-2\sqrt{2}\right)\right)±\left(4\sqrt{2}+6\sqrt{3}\right)}{2\times 2}
Take the square root of 140+48\sqrt{6}.
y=\frac{6\sqrt{3}-4\sqrt{2}±\left(4\sqrt{2}+6\sqrt{3}\right)}{2\times 2}
The opposite of 1\left(-1\right)\times 2\left(3\sqrt{3}-2\sqrt{2}\right) is 6\sqrt{3}-4\sqrt{2}.
y=\frac{6\sqrt{3}-4\sqrt{2}±\left(4\sqrt{2}+6\sqrt{3}\right)}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{12\sqrt{3}}{4}
Now solve the equation y=\frac{6\sqrt{3}-4\sqrt{2}±\left(4\sqrt{2}+6\sqrt{3}\right)}{4} when ± is plus. Add 6\sqrt{3}-4\sqrt{2} to 6\sqrt{3}+4\sqrt{2}.
y=3\sqrt{3}
Divide 12\sqrt{3} by 4.
y=-\frac{8\sqrt{2}}{4}
Now solve the equation y=\frac{6\sqrt{3}-4\sqrt{2}±\left(4\sqrt{2}+6\sqrt{3}\right)}{4} when ± is minus. Subtract 6\sqrt{3}+4\sqrt{2} from 6\sqrt{3}-4\sqrt{2}.
y=-2\sqrt{2}
Divide -8\sqrt{2} by 4.
x=-3\sqrt{3}+3\sqrt{3}-2\sqrt{2}
There are two solutions for y: 3\sqrt{3} and -2\sqrt{2}. Substitute 3\sqrt{3} for y in the equation x=-y+3\sqrt{3}-2\sqrt{2} to find the corresponding solution for x that satisfies both equations.
x=3\sqrt{3}-2\sqrt{2}-3\sqrt{3}
Add -3\sqrt{3} to 3\sqrt{3}-2\sqrt{2}.
x=-\left(-2\sqrt{2}\right)+3\sqrt{3}-2\sqrt{2}
Now substitute -2\sqrt{2} for y in the equation x=-y+3\sqrt{3}-2\sqrt{2} and solve to find the corresponding solution for x that satisfies both equations.
x=3\sqrt{3}-2\sqrt{2}-\left(-2\sqrt{2}\right)
Add -\left(-2\sqrt{2}\right) to 3\sqrt{3}-2\sqrt{2}.
x=3\sqrt{3}-2\sqrt{2}-3\sqrt{3},y=3\sqrt{3}\text{ or }x=3\sqrt{3}-2\sqrt{2}-\left(-2\sqrt{2}\right),y=-2\sqrt{2}
The system is now solved.