\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 25 } \\ { y = \frac { 1 } { 2 } x + 1 } \end{array} \right.
Solve for x, y
x=4\text{, }y=3
x=-\frac{24}{5}=-4.8\text{, }y=-\frac{7}{5}=-1.4
Graph
Share
Copied to clipboard
y-\frac{1}{2}x=1
Consider the second equation. Subtract \frac{1}{2}x from both sides.
y-\frac{1}{2}x=1,x^{2}+y^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-\frac{1}{2}x=1
Solve y-\frac{1}{2}x=1 for y by isolating y on the left hand side of the equal sign.
y=\frac{1}{2}x+1
Subtract -\frac{1}{2}x from both sides of the equation.
x^{2}+\left(\frac{1}{2}x+1\right)^{2}=25
Substitute \frac{1}{2}x+1 for y in the other equation, x^{2}+y^{2}=25.
x^{2}+\frac{1}{4}x^{2}+x+1=25
Square \frac{1}{2}x+1.
\frac{5}{4}x^{2}+x+1=25
Add x^{2} to \frac{1}{4}x^{2}.
\frac{5}{4}x^{2}+x-24=0
Subtract 25 from both sides of the equation.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{5}{4}\left(-24\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 1\times \frac{1}{2}\times 2 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{5}{4}\left(-24\right)}}{2\times \frac{5}{4}}
Square 1\times 1\times \frac{1}{2}\times 2.
x=\frac{-1±\sqrt{1-5\left(-24\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
x=\frac{-1±\sqrt{1+120}}{2\times \frac{5}{4}}
Multiply -5 times -24.
x=\frac{-1±\sqrt{121}}{2\times \frac{5}{4}}
Add 1 to 120.
x=\frac{-1±11}{2\times \frac{5}{4}}
Take the square root of 121.
x=\frac{-1±11}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
x=\frac{10}{\frac{5}{2}}
Now solve the equation x=\frac{-1±11}{\frac{5}{2}} when ± is plus. Add -1 to 11.
x=4
Divide 10 by \frac{5}{2} by multiplying 10 by the reciprocal of \frac{5}{2}.
x=-\frac{12}{\frac{5}{2}}
Now solve the equation x=\frac{-1±11}{\frac{5}{2}} when ± is minus. Subtract 11 from -1.
x=-\frac{24}{5}
Divide -12 by \frac{5}{2} by multiplying -12 by the reciprocal of \frac{5}{2}.
y=\frac{1}{2}\times 4+1
There are two solutions for x: 4 and -\frac{24}{5}. Substitute 4 for x in the equation y=\frac{1}{2}x+1 to find the corresponding solution for y that satisfies both equations.
y=2+1
Multiply \frac{1}{2} times 4.
y=3
Add \frac{1}{2}\times 4 to 1.
y=\frac{1}{2}\left(-\frac{24}{5}\right)+1
Now substitute -\frac{24}{5} for x in the equation y=\frac{1}{2}x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{12}{5}+1
Multiply \frac{1}{2} times -\frac{24}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=-\frac{7}{5}
Add -\frac{24}{5}\times \frac{1}{2} to 1.
y=3,x=4\text{ or }y=-\frac{7}{5},x=-\frac{24}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}