\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 20 } \\ { x + 3 y = 2 } \end{array} \right.
Solve for x, y
x=\frac{22}{5}=4.4\text{, }y=-\frac{4}{5}=-0.8
x=-4\text{, }y=2
Graph
Share
Copied to clipboard
x+3y=2,y^{2}+x^{2}=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=2
Solve x+3y=2 for x by isolating x on the left hand side of the equal sign.
x=-3y+2
Subtract 3y from both sides of the equation.
y^{2}+\left(-3y+2\right)^{2}=20
Substitute -3y+2 for x in the other equation, y^{2}+x^{2}=20.
y^{2}+9y^{2}-12y+4=20
Square -3y+2.
10y^{2}-12y+4=20
Add y^{2} to 9y^{2}.
10y^{2}-12y-16=0
Subtract 20 from both sides of the equation.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 10\left(-16\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-3\right)^{2} for a, 1\times 2\left(-3\right)\times 2 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 10\left(-16\right)}}{2\times 10}
Square 1\times 2\left(-3\right)\times 2.
y=\frac{-\left(-12\right)±\sqrt{144-40\left(-16\right)}}{2\times 10}
Multiply -4 times 1+1\left(-3\right)^{2}.
y=\frac{-\left(-12\right)±\sqrt{144+640}}{2\times 10}
Multiply -40 times -16.
y=\frac{-\left(-12\right)±\sqrt{784}}{2\times 10}
Add 144 to 640.
y=\frac{-\left(-12\right)±28}{2\times 10}
Take the square root of 784.
y=\frac{12±28}{2\times 10}
The opposite of 1\times 2\left(-3\right)\times 2 is 12.
y=\frac{12±28}{20}
Multiply 2 times 1+1\left(-3\right)^{2}.
y=\frac{40}{20}
Now solve the equation y=\frac{12±28}{20} when ± is plus. Add 12 to 28.
y=2
Divide 40 by 20.
y=-\frac{16}{20}
Now solve the equation y=\frac{12±28}{20} when ± is minus. Subtract 28 from 12.
y=-\frac{4}{5}
Reduce the fraction \frac{-16}{20} to lowest terms by extracting and canceling out 4.
x=-3\times 2+2
There are two solutions for y: 2 and -\frac{4}{5}. Substitute 2 for y in the equation x=-3y+2 to find the corresponding solution for x that satisfies both equations.
x=-6+2
Multiply -3 times 2.
x=-4
Add -3\times 2 to 2.
x=-3\left(-\frac{4}{5}\right)+2
Now substitute -\frac{4}{5} for y in the equation x=-3y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{12}{5}+2
Multiply -3 times -\frac{4}{5}.
x=\frac{22}{5}
Add -3\left(-\frac{4}{5}\right) to 2.
x=-4,y=2\text{ or }x=\frac{22}{5},y=-\frac{4}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}