Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+3y=2,y^{2}+x^{2}=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=2
Solve x+3y=2 for x by isolating x on the left hand side of the equal sign.
x=-3y+2
Subtract 3y from both sides of the equation.
y^{2}+\left(-3y+2\right)^{2}=20
Substitute -3y+2 for x in the other equation, y^{2}+x^{2}=20.
y^{2}+9y^{2}-12y+4=20
Square -3y+2.
10y^{2}-12y+4=20
Add y^{2} to 9y^{2}.
10y^{2}-12y-16=0
Subtract 20 from both sides of the equation.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 10\left(-16\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-3\right)^{2} for a, 1\times 2\left(-3\right)\times 2 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 10\left(-16\right)}}{2\times 10}
Square 1\times 2\left(-3\right)\times 2.
y=\frac{-\left(-12\right)±\sqrt{144-40\left(-16\right)}}{2\times 10}
Multiply -4 times 1+1\left(-3\right)^{2}.
y=\frac{-\left(-12\right)±\sqrt{144+640}}{2\times 10}
Multiply -40 times -16.
y=\frac{-\left(-12\right)±\sqrt{784}}{2\times 10}
Add 144 to 640.
y=\frac{-\left(-12\right)±28}{2\times 10}
Take the square root of 784.
y=\frac{12±28}{2\times 10}
The opposite of 1\times 2\left(-3\right)\times 2 is 12.
y=\frac{12±28}{20}
Multiply 2 times 1+1\left(-3\right)^{2}.
y=\frac{40}{20}
Now solve the equation y=\frac{12±28}{20} when ± is plus. Add 12 to 28.
y=2
Divide 40 by 20.
y=-\frac{16}{20}
Now solve the equation y=\frac{12±28}{20} when ± is minus. Subtract 28 from 12.
y=-\frac{4}{5}
Reduce the fraction \frac{-16}{20} to lowest terms by extracting and canceling out 4.
x=-3\times 2+2
There are two solutions for y: 2 and -\frac{4}{5}. Substitute 2 for y in the equation x=-3y+2 to find the corresponding solution for x that satisfies both equations.
x=-6+2
Multiply -3 times 2.
x=-4
Add -3\times 2 to 2.
x=-3\left(-\frac{4}{5}\right)+2
Now substitute -\frac{4}{5} for y in the equation x=-3y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{12}{5}+2
Multiply -3 times -\frac{4}{5}.
x=\frac{22}{5}
Add -3\left(-\frac{4}{5}\right) to 2.
x=-4,y=2\text{ or }x=\frac{22}{5},y=-\frac{4}{5}
The system is now solved.