\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 13 } \\ { 2 x + 3 y = 13 } \end{array} \right.
Solve for x, y
x=2
y=3
Graph
Share
Copied to clipboard
2x+3y=13,y^{2}+x^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=13
Solve 2x+3y=13 for x by isolating x on the left hand side of the equal sign.
2x=-3y+13
Subtract 3y from both sides of the equation.
x=-\frac{3}{2}y+\frac{13}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{3}{2}y+\frac{13}{2}\right)^{2}=13
Substitute -\frac{3}{2}y+\frac{13}{2} for x in the other equation, y^{2}+x^{2}=13.
y^{2}+\frac{9}{4}y^{2}-\frac{39}{2}y+\frac{169}{4}=13
Square -\frac{3}{2}y+\frac{13}{2}.
\frac{13}{4}y^{2}-\frac{39}{2}y+\frac{169}{4}=13
Add y^{2} to \frac{9}{4}y^{2}.
\frac{13}{4}y^{2}-\frac{39}{2}y+\frac{117}{4}=0
Subtract 13 from both sides of the equation.
y=\frac{-\left(-\frac{39}{2}\right)±\sqrt{\left(-\frac{39}{2}\right)^{2}-4\times \frac{13}{4}\times \frac{117}{4}}}{2\times \frac{13}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{3}{2}\right)^{2} for a, 1\times \frac{13}{2}\left(-\frac{3}{2}\right)\times 2 for b, and \frac{117}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{39}{2}\right)±\sqrt{\frac{1521}{4}-4\times \frac{13}{4}\times \frac{117}{4}}}{2\times \frac{13}{4}}
Square 1\times \frac{13}{2}\left(-\frac{3}{2}\right)\times 2.
y=\frac{-\left(-\frac{39}{2}\right)±\sqrt{\frac{1521}{4}-13\times \frac{117}{4}}}{2\times \frac{13}{4}}
Multiply -4 times 1+1\left(-\frac{3}{2}\right)^{2}.
y=\frac{-\left(-\frac{39}{2}\right)±\sqrt{\frac{1521-1521}{4}}}{2\times \frac{13}{4}}
Multiply -13 times \frac{117}{4}.
y=\frac{-\left(-\frac{39}{2}\right)±\sqrt{0}}{2\times \frac{13}{4}}
Add \frac{1521}{4} to -\frac{1521}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{-\frac{39}{2}}{2\times \frac{13}{4}}
Take the square root of 0.
y=\frac{\frac{39}{2}}{2\times \frac{13}{4}}
The opposite of 1\times \frac{13}{2}\left(-\frac{3}{2}\right)\times 2 is \frac{39}{2}.
y=\frac{\frac{39}{2}}{\frac{13}{2}}
Multiply 2 times 1+1\left(-\frac{3}{2}\right)^{2}.
y=3
Divide \frac{39}{2} by \frac{13}{2} by multiplying \frac{39}{2} by the reciprocal of \frac{13}{2}.
x=-\frac{3}{2}\times 3+\frac{13}{2}
There are two solutions for y: 3 and 3. Substitute 3 for y in the equation x=-\frac{3}{2}y+\frac{13}{2} to find the corresponding solution for x that satisfies both equations.
x=\frac{-9+13}{2}
Multiply -\frac{3}{2} times 3.
x=2
Add -\frac{3}{2}\times 3 to \frac{13}{2}.
x=2,y=3\text{ or }x=2,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}