\left\{ \begin{array} { l } { x ^ { 2 } + y ^ { 2 } = 1 } \\ { 4 x - 3 y = 5 } \end{array} \right.
Solve for x, y
x=\frac{4}{5}=0.8
y=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
4x-3y=5,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-3y=5
Solve 4x-3y=5 for x by isolating x on the left hand side of the equal sign.
4x=3y+5
Subtract -3y from both sides of the equation.
x=\frac{3}{4}y+\frac{5}{4}
Divide both sides by 4.
y^{2}+\left(\frac{3}{4}y+\frac{5}{4}\right)^{2}=1
Substitute \frac{3}{4}y+\frac{5}{4} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\frac{9}{16}y^{2}+\frac{15}{8}y+\frac{25}{16}=1
Square \frac{3}{4}y+\frac{5}{4}.
\frac{25}{16}y^{2}+\frac{15}{8}y+\frac{25}{16}=1
Add y^{2} to \frac{9}{16}y^{2}.
\frac{25}{16}y^{2}+\frac{15}{8}y+\frac{9}{16}=0
Subtract 1 from both sides of the equation.
y=\frac{-\frac{15}{8}±\sqrt{\left(\frac{15}{8}\right)^{2}-4\times \frac{25}{16}\times \frac{9}{16}}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{3}{4}\right)^{2} for a, 1\times \frac{5}{4}\times \frac{3}{4}\times 2 for b, and \frac{9}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{15}{8}±\sqrt{\frac{225}{64}-4\times \frac{25}{16}\times \frac{9}{16}}}{2\times \frac{25}{16}}
Square 1\times \frac{5}{4}\times \frac{3}{4}\times 2.
y=\frac{-\frac{15}{8}±\sqrt{\frac{225}{64}-\frac{25}{4}\times \frac{9}{16}}}{2\times \frac{25}{16}}
Multiply -4 times 1+1\times \left(\frac{3}{4}\right)^{2}.
y=\frac{-\frac{15}{8}±\sqrt{\frac{225-225}{64}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times \frac{9}{16} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{15}{8}±\sqrt{0}}{2\times \frac{25}{16}}
Add \frac{225}{64} to -\frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{\frac{15}{8}}{2\times \frac{25}{16}}
Take the square root of 0.
y=-\frac{\frac{15}{8}}{\frac{25}{8}}
Multiply 2 times 1+1\times \left(\frac{3}{4}\right)^{2}.
y=-\frac{3}{5}
Divide -\frac{15}{8} by \frac{25}{8} by multiplying -\frac{15}{8} by the reciprocal of \frac{25}{8}.
x=\frac{3}{4}\left(-\frac{3}{5}\right)+\frac{5}{4}
There are two solutions for y: -\frac{3}{5} and -\frac{3}{5}. Substitute -\frac{3}{5} for y in the equation x=\frac{3}{4}y+\frac{5}{4} to find the corresponding solution for x that satisfies both equations.
x=-\frac{9}{20}+\frac{5}{4}
Multiply \frac{3}{4} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{5}
Add -\frac{3}{5}\times \frac{3}{4} to \frac{5}{4}.
x=\frac{4}{5},y=-\frac{3}{5}\text{ or }x=\frac{4}{5},y=-\frac{3}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}