Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+4y-5=0,y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y-5=0
Solve 3x+4y-5=0 for x by isolating x on the left hand side of the equal sign.
3x+4y=5
Add 5 to both sides of the equation.
3x=-4y+5
Subtract 4y from both sides of the equation.
x=-\frac{4}{3}y+\frac{5}{3}
Divide both sides by 3.
y^{2}+\left(-\frac{4}{3}y+\frac{5}{3}\right)^{2}=1
Substitute -\frac{4}{3}y+\frac{5}{3} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\frac{16}{9}y^{2}-\frac{40}{9}y+\frac{25}{9}=1
Square -\frac{4}{3}y+\frac{5}{3}.
\frac{25}{9}y^{2}-\frac{40}{9}y+\frac{25}{9}=1
Add y^{2} to \frac{16}{9}y^{2}.
\frac{25}{9}y^{2}-\frac{40}{9}y+\frac{16}{9}=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-\frac{40}{9}\right)±\sqrt{\left(-\frac{40}{9}\right)^{2}-4\times \frac{25}{9}\times \frac{16}{9}}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{4}{3}\right)^{2} for a, 1\times \frac{5}{3}\left(-\frac{4}{3}\right)\times 2 for b, and \frac{16}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{40}{9}\right)±\sqrt{\frac{1600}{81}-4\times \frac{25}{9}\times \frac{16}{9}}}{2\times \frac{25}{9}}
Square 1\times \frac{5}{3}\left(-\frac{4}{3}\right)\times 2.
y=\frac{-\left(-\frac{40}{9}\right)±\sqrt{\frac{1600}{81}-\frac{100}{9}\times \frac{16}{9}}}{2\times \frac{25}{9}}
Multiply -4 times 1+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-\frac{40}{9}\right)±\sqrt{\frac{1600-1600}{81}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{40}{9}\right)±\sqrt{0}}{2\times \frac{25}{9}}
Add \frac{1600}{81} to -\frac{1600}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{-\frac{40}{9}}{2\times \frac{25}{9}}
Take the square root of 0.
y=\frac{\frac{40}{9}}{2\times \frac{25}{9}}
The opposite of 1\times \frac{5}{3}\left(-\frac{4}{3}\right)\times 2 is \frac{40}{9}.
y=\frac{\frac{40}{9}}{\frac{50}{9}}
Multiply 2 times 1+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{4}{5}
Divide \frac{40}{9} by \frac{50}{9} by multiplying \frac{40}{9} by the reciprocal of \frac{50}{9}.
x=-\frac{4}{3}\times \frac{4}{5}+\frac{5}{3}
There are two solutions for y: \frac{4}{5} and \frac{4}{5}. Substitute \frac{4}{5} for y in the equation x=-\frac{4}{3}y+\frac{5}{3} to find the corresponding solution for x that satisfies both equations.
x=-\frac{16}{15}+\frac{5}{3}
Multiply -\frac{4}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{5}
Add -\frac{4}{3}\times \frac{4}{5} to \frac{5}{3}.
x=\frac{3}{5},y=\frac{4}{5}\text{ or }x=\frac{3}{5},y=\frac{4}{5}
The system is now solved.