\left\{ \begin{array} { l } { x = y + 1400 } \\ { 0.09 x + 0.04 y = 880 } \end{array} \right.
Solve for x, y
x=7200
y=5800
Graph
Share
Copied to clipboard
x-y=1400
Consider the first equation. Subtract y from both sides.
x-y=1400,0.09x+0.04y=880
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=1400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+1400
Add y to both sides of the equation.
0.09\left(y+1400\right)+0.04y=880
Substitute y+1400 for x in the other equation, 0.09x+0.04y=880.
0.09y+126+0.04y=880
Multiply 0.09 times y+1400.
0.13y+126=880
Add \frac{9y}{100} to \frac{y}{25}.
0.13y=754
Subtract 126 from both sides of the equation.
y=5800
Divide both sides of the equation by 0.13, which is the same as multiplying both sides by the reciprocal of the fraction.
x=5800+1400
Substitute 5800 for y in x=y+1400. Because the resulting equation contains only one variable, you can solve for x directly.
x=7200
Add 1400 to 5800.
x=7200,y=5800
The system is now solved.
x-y=1400
Consider the first equation. Subtract y from both sides.
x-y=1400,0.09x+0.04y=880
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1400\\880\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right))\left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right))\left(\begin{matrix}1400\\880\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right))\left(\begin{matrix}1400\\880\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.09&0.04\end{matrix}\right))\left(\begin{matrix}1400\\880\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.04}{0.04-\left(-0.09\right)}&-\frac{-1}{0.04-\left(-0.09\right)}\\-\frac{0.09}{0.04-\left(-0.09\right)}&\frac{1}{0.04-\left(-0.09\right)}\end{matrix}\right)\left(\begin{matrix}1400\\880\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&\frac{100}{13}\\-\frac{9}{13}&\frac{100}{13}\end{matrix}\right)\left(\begin{matrix}1400\\880\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}\times 1400+\frac{100}{13}\times 880\\-\frac{9}{13}\times 1400+\frac{100}{13}\times 880\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7200\\5800\end{matrix}\right)
Do the arithmetic.
x=7200,y=5800
Extract the matrix elements x and y.
x-y=1400
Consider the first equation. Subtract y from both sides.
x-y=1400,0.09x+0.04y=880
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.09x+0.09\left(-1\right)y=0.09\times 1400,0.09x+0.04y=880
To make x and \frac{9x}{100} equal, multiply all terms on each side of the first equation by 0.09 and all terms on each side of the second by 1.
0.09x-0.09y=126,0.09x+0.04y=880
Simplify.
0.09x-0.09x-0.09y-0.04y=126-880
Subtract 0.09x+0.04y=880 from 0.09x-0.09y=126 by subtracting like terms on each side of the equal sign.
-0.09y-0.04y=126-880
Add \frac{9x}{100} to -\frac{9x}{100}. Terms \frac{9x}{100} and -\frac{9x}{100} cancel out, leaving an equation with only one variable that can be solved.
-0.13y=126-880
Add -\frac{9y}{100} to -\frac{y}{25}.
-0.13y=-754
Add 126 to -880.
y=5800
Divide both sides of the equation by -0.13, which is the same as multiplying both sides by the reciprocal of the fraction.
0.09x+0.04\times 5800=880
Substitute 5800 for y in 0.09x+0.04y=880. Because the resulting equation contains only one variable, you can solve for x directly.
0.09x+232=880
Multiply 0.04 times 5800.
0.09x=648
Subtract 232 from both sides of the equation.
x=7200
Divide both sides of the equation by 0.09, which is the same as multiplying both sides by the reciprocal of the fraction.
x=7200,y=5800
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}