\left\{ \begin{array} { l } { x = 3 y } \\ { 2 ( x + y ) + 2 x = 280 } \end{array} \right.
Solve for x, y
x=60
y=20
Graph
Share
Copied to clipboard
x-3y=0
Consider the first equation. Subtract 3y from both sides.
2x+2y+2x=280
Consider the second equation. Use the distributive property to multiply 2 by x+y.
4x+2y=280
Combine 2x and 2x to get 4x.
x-3y=0,4x+2y=280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=3y
Add 3y to both sides of the equation.
4\times 3y+2y=280
Substitute 3y for x in the other equation, 4x+2y=280.
12y+2y=280
Multiply 4 times 3y.
14y=280
Add 12y to 2y.
y=20
Divide both sides by 14.
x=3\times 20
Substitute 20 for y in x=3y. Because the resulting equation contains only one variable, you can solve for x directly.
x=60
Multiply 3 times 20.
x=60,y=20
The system is now solved.
x-3y=0
Consider the first equation. Subtract 3y from both sides.
2x+2y+2x=280
Consider the second equation. Use the distributive property to multiply 2 by x+y.
4x+2y=280
Combine 2x and 2x to get 4x.
x-3y=0,4x+2y=280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-3\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\4&2\end{matrix}\right))\left(\begin{matrix}1&-3\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&2\end{matrix}\right))\left(\begin{matrix}0\\280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&2\end{matrix}\right))\left(\begin{matrix}0\\280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&2\end{matrix}\right))\left(\begin{matrix}0\\280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\times 4\right)}&-\frac{-3}{2-\left(-3\times 4\right)}\\-\frac{4}{2-\left(-3\times 4\right)}&\frac{1}{2-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}0\\280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{3}{14}\\-\frac{2}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}0\\280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 280\\\frac{1}{14}\times 280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\20\end{matrix}\right)
Do the arithmetic.
x=60,y=20
Extract the matrix elements x and y.
x-3y=0
Consider the first equation. Subtract 3y from both sides.
2x+2y+2x=280
Consider the second equation. Use the distributive property to multiply 2 by x+y.
4x+2y=280
Combine 2x and 2x to get 4x.
x-3y=0,4x+2y=280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4\left(-3\right)y=0,4x+2y=280
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x-12y=0,4x+2y=280
Simplify.
4x-4x-12y-2y=-280
Subtract 4x+2y=280 from 4x-12y=0 by subtracting like terms on each side of the equal sign.
-12y-2y=-280
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
-14y=-280
Add -12y to -2y.
y=20
Divide both sides by -14.
4x+2\times 20=280
Substitute 20 for y in 4x+2y=280. Because the resulting equation contains only one variable, you can solve for x directly.
4x+40=280
Multiply 2 times 20.
4x=240
Subtract 40 from both sides of the equation.
x=60
Divide both sides by 4.
x=60,y=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}