\left\{ \begin{array} { l } { x = 1.5 y } \\ { 150 + 60 y + 30 = 60 x } \end{array} \right.
Solve for x, y
x=9
y=6
Graph
Share
Copied to clipboard
x-1.5y=0
Consider the first equation. Subtract 1.5y from both sides.
180+60y=60x
Consider the second equation. Add 150 and 30 to get 180.
180+60y-60x=0
Subtract 60x from both sides.
60y-60x=-180
Subtract 180 from both sides. Anything subtracted from zero gives its negation.
x-1.5y=0,-60x+60y=-180
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-1.5y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=1.5y
Add \frac{3y}{2} to both sides of the equation.
-60\times 1.5y+60y=-180
Substitute \frac{3y}{2} for x in the other equation, -60x+60y=-180.
-90y+60y=-180
Multiply -60 times \frac{3y}{2}.
-30y=-180
Add -90y to 60y.
y=6
Divide both sides by -30.
x=1.5\times 6
Substitute 6 for y in x=1.5y. Because the resulting equation contains only one variable, you can solve for x directly.
x=9
Multiply 1.5 times 6.
x=9,y=6
The system is now solved.
x-1.5y=0
Consider the first equation. Subtract 1.5y from both sides.
180+60y=60x
Consider the second equation. Add 150 and 30 to get 180.
180+60y-60x=0
Subtract 60x from both sides.
60y-60x=-180
Subtract 180 from both sides. Anything subtracted from zero gives its negation.
x-1.5y=0,-60x+60y=-180
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-180\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right))\left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right))\left(\begin{matrix}0\\-180\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right))\left(\begin{matrix}0\\-180\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1.5\\-60&60\end{matrix}\right))\left(\begin{matrix}0\\-180\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{60-\left(-1.5\left(-60\right)\right)}&-\frac{-1.5}{60-\left(-1.5\left(-60\right)\right)}\\-\frac{-60}{60-\left(-1.5\left(-60\right)\right)}&\frac{1}{60-\left(-1.5\left(-60\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-180\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-\frac{1}{20}\\-2&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}0\\-180\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\left(-180\right)\\-\frac{1}{30}\left(-180\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Do the arithmetic.
x=9,y=6
Extract the matrix elements x and y.
x-1.5y=0
Consider the first equation. Subtract 1.5y from both sides.
180+60y=60x
Consider the second equation. Add 150 and 30 to get 180.
180+60y-60x=0
Subtract 60x from both sides.
60y-60x=-180
Subtract 180 from both sides. Anything subtracted from zero gives its negation.
x-1.5y=0,-60x+60y=-180
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-60x-60\left(-1.5\right)y=0,-60x+60y=-180
To make x and -60x equal, multiply all terms on each side of the first equation by -60 and all terms on each side of the second by 1.
-60x+90y=0,-60x+60y=-180
Simplify.
-60x+60x+90y-60y=180
Subtract -60x+60y=-180 from -60x+90y=0 by subtracting like terms on each side of the equal sign.
90y-60y=180
Add -60x to 60x. Terms -60x and 60x cancel out, leaving an equation with only one variable that can be solved.
30y=180
Add 90y to -60y.
y=6
Divide both sides by 30.
-60x+60\times 6=-180
Substitute 6 for y in -60x+60y=-180. Because the resulting equation contains only one variable, you can solve for x directly.
-60x+360=-180
Multiply 60 times 6.
-60x=-540
Subtract 360 from both sides of the equation.
x=9
Divide both sides by -60.
x=9,y=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}