\left\{ \begin{array} { l } { x = - \frac { 3 } { 2 } } \\ { y = 2 x ^ { 4 } - 5 x ^ { 3 } - 10 x ^ { 2 } + 15 x + 20 } \end{array} \right.
Solve for x, y
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
y=2
Graph
Share
Copied to clipboard
y=2\left(-\frac{3}{2}\right)^{4}-5\left(-\frac{3}{2}\right)^{3}-10\left(-\frac{3}{2}\right)^{2}+15\left(-\frac{3}{2}\right)+20
Consider the second equation. Insert the known values of variables into the equation.
y=2\times \frac{81}{16}-5\left(-\frac{3}{2}\right)^{3}-10\left(-\frac{3}{2}\right)^{2}+15\left(-\frac{3}{2}\right)+20
Calculate -\frac{3}{2} to the power of 4 and get \frac{81}{16}.
y=\frac{81}{8}-5\left(-\frac{3}{2}\right)^{3}-10\left(-\frac{3}{2}\right)^{2}+15\left(-\frac{3}{2}\right)+20
Multiply 2 and \frac{81}{16} to get \frac{81}{8}.
y=\frac{81}{8}-5\left(-\frac{27}{8}\right)-10\left(-\frac{3}{2}\right)^{2}+15\left(-\frac{3}{2}\right)+20
Calculate -\frac{3}{2} to the power of 3 and get -\frac{27}{8}.
y=\frac{81}{8}+\frac{135}{8}-10\left(-\frac{3}{2}\right)^{2}+15\left(-\frac{3}{2}\right)+20
Multiply -5 and -\frac{27}{8} to get \frac{135}{8}.
y=27-10\left(-\frac{3}{2}\right)^{2}+15\left(-\frac{3}{2}\right)+20
Add \frac{81}{8} and \frac{135}{8} to get 27.
y=27-10\times \frac{9}{4}+15\left(-\frac{3}{2}\right)+20
Calculate -\frac{3}{2} to the power of 2 and get \frac{9}{4}.
y=27-\frac{45}{2}+15\left(-\frac{3}{2}\right)+20
Multiply -10 and \frac{9}{4} to get -\frac{45}{2}.
y=\frac{9}{2}+15\left(-\frac{3}{2}\right)+20
Subtract \frac{45}{2} from 27 to get \frac{9}{2}.
y=\frac{9}{2}-\frac{45}{2}+20
Multiply 15 and -\frac{3}{2} to get -\frac{45}{2}.
y=-18+20
Subtract \frac{45}{2} from \frac{9}{2} to get -18.
y=2
Add -18 and 20 to get 2.
x=-\frac{3}{2} y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}