\left\{ \begin{array} { l } { x + y i - 2 z = 10 } \\ { x - y + 2 i z = 20 } \\ { i x + 3 i y - ( 1 + i ) z = 30 } \end{array} \right.
Solve for x, y, z
x=3-11i
y=-3-9i
z=1-7i
Share
Copied to clipboard
x=-iy+2z+10
Solve x+yi-2z=10 for x.
-iy+2z+10-y+2iz=20 i\left(-iy+2z+10\right)+3iy-\left(1+i\right)z=30
Substitute -iy+2z+10 for x in the second and third equation.
y=2z+\left(-5+5i\right) z=\left(-1+2i\right)y+\left(-20-10i\right)
Solve these equations for y and z respectively.
z=\left(-1+2i\right)\left(2z+\left(-5+5i\right)\right)+\left(-20-10i\right)
Substitute 2z+\left(-5+5i\right) for y in the equation z=\left(-1+2i\right)y+\left(-20-10i\right).
z=1-7i
Solve z=\left(-1+2i\right)\left(2z+\left(-5+5i\right)\right)+\left(-20-10i\right) for z.
y=2\left(1-7i\right)+\left(-5+5i\right)
Substitute 1-7i for z in the equation y=2z+\left(-5+5i\right).
y=-3-9i
Calculate y from y=2\left(1-7i\right)+\left(-5+5i\right).
x=-i\left(-3-9i\right)+2\left(1-7i\right)+10
Substitute -3-9i for y and 1-7i for z in the equation x=-iy+2z+10.
x=3-11i
Calculate x from x=-i\left(-3-9i\right)+2\left(1-7i\right)+10.
x=3-11i y=-3-9i z=1-7i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}